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Introduction
The correspondence between Leonhard Euler and Christian Goldbach is a rich source for
studying the development of Euler’s work in number theory. It was first published by
P.H. Fuss [5] in 1843, and then again by A.P. Jushkevich and E. Winter [9] in 1965. The
correspondence, both in the original mixture of Latin and German, as well as in an English
translation, is scheduled to appear as vol. 4 of Series IV.A of Euler’s Opera Omnia [3] at
the end of 2011.
Many letters between Euler and Goldbach deal with various number theoretic problems
first posed (and sometimes solved) by Pierre Fermat. Here we discuss his results on sums
of two and four squares. As early as September 1636, Fermat stated the Polygonal-Number
Theorem in a letter to Mersenne: Every positive integer is the sum of (at most) three
triangular numbers, four squares, five pentagonal numbers etc.:

1. Every number is the sum of one, two or three triangular numbers,

one, 2, 3, 4 . . . squares,
one, 2, 3, 4, 5 . . . pentagonal numbers,
one, 2, 3, 4, 5, 6 . . . hexagonal numbers,
one, 2, 3, 4, 5, 6, 7 . . . heptagonal numbers,

and so on until infinity.
It seems that Diophantus1 assumed the second part of the theorem, and Bachet tried
to verify it empirically, but did not attain a demonstration.

Fermat then continues

2. The eightfold multiple of an arbitrary number, diminished by 1, is composed of four
squares – not only in integers – which perhaps others might have already seen – but
also in fractions, as I promise to prove.

The point Fermat is trying to make is that primes of the form 8n − 1 cannot be written as
a sum of less than four rational squares.

1The passage in Diophantus which Fermat is referring to is problem 31 in Book IV; for Fermat’s comments
on this problem, see [4, I, p. 305]. In Heath’s edition [7, p. 188], this is problem 29 in Book IV.



Euler, Goldbach, and “Fermat’s Theorem” 145

A brief summary of the most important letters concerning sums of squares is given in the
following table:

date written to content

July 15, 1636 Mersenne A number n is a sum of exactly three integral squares
if and only if a2n is.

Sept. 2, 1636 Mersenne A number is a sum of three integral squares if and only
if it is a sum of three rational squares.

Sept. 16, 1636 Roberval If a and b are rational, and if a2 +b2 = 2(a +b)x + x2,
then x and x2 are irrational.

Sept. 1636 Mersenne F. asks for solutions of x4 + y4 = z4 and x3 + y3 = z3,
and states the Polygonal-Number Theorem. He claims
that every integer 8n − 1 is the sum of four squares, but
not of three; both in integers and fractions.

May 1640 Mersenne Fermat repeats the problems he communicated in Sept.
1636.

Dec. 1640 Mersenne Fermat states Two-Squares Theorem.
June 1658 Digby Fermat claims proof of the Two-Squares Theorem.
Aug. 1659 Carcavi Fermat claims proof of the Four-Squares Theorem.

In addition we remark that in a letter to Descartes dated March 22, 1638, Mersenne reports
that Fermat is able to prove that no number of the form 4n − 1 is a sum of two integral or
rational squares.

1 The Four-Squares Theorem in the Euler-Goldbach correspondence

In this article we describe Euler’s efforts at proving the Four-Squares Theorem. As we will
see, using the lemma which Euler “almost” proved in his letter no. 141 it is an easy exercise
to complete the proof. In order to see how natural Euler’s approach is, we will first discuss a
proof of the Two-Squares Theorem based on the same principles. The first published proof
of the Four-Squares Theorem is due to Lagrange [10]; immediately afterwards, Euler [2]
simplified Lagrange’s version.

There are perhaps no better examples in Goldbach’s correspondence with Euler for illumi-
nating his role as a catalyst than the letters discussing various aspects of the Four-Squares
Theorem.

In his letter [EG126; April 6, 1748] to Euler, Goldbach writes2

If you can prove, as you think you can, that all numbers 8m + 3 can be brought
to the form 2a2 + b2 if they are prime you will also easily find that all prime
numbers 4m + 3 belong to the formula 2a2 + b2 + c2, since in my opinion this
comprises all odd numbers; but if this were proved just for all prime numbers,
it should be obvious that all positive numbers consist of four squares.

2The excerpts from the correspondence Euler–Goldbach are all taken from [3]; the translation into English is
due to Martin Mattmüller.
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Fermat’s Theorems in the Euler-Goldbach correspondence I

# letter content

2 Dec. 1, 1729 Goldbach asks whether Euler knows Fermat’s claim that all
numbers 22n + 1 are prime.

3 Jan. 8, 1730 Euler is unable to do anything with Fermat’s problem.
4 May 22, 1730 Goldbach explains how to compute with remainders.
5 June 4, 1730 Euler observes that 2n + 1 is composite if n has an odd prime

divisor. “Lately, reading Fermat’s works, I came upon another
rather elegant theorem stating that any number is the sum of
four squares, or that for any number four square numbers can
be found whose sum is equal to the given number.”

6 June 26, 1730 Goldbach has not read Fermat’s works.
7 June 25, 1730 Euler observes that 104+1 is divisible by 37, and that 38+28 is

divisible by 17. Euler cannot prove that any number is the sum
of four squares. He has found another result by Fermat, namely
that 1 is the only triangular number that is a fourth power. (Sev-
eral years earlier, Goldbach had sent an erroneous proof of this
claim to D. Bernoulli.)

8 July 31, 1730 Goldbach proves that Fermat numbers are pairwise coprime.
He claims that 1 is the only square among the triangular num-
bers.

9 Aug. 10, 1730 Euler mentions that Fermat and Wallis studied the equation
ap2 + 1 = q2, and mentions a method for solving it which
he credits to Pell.

10 Oct. 9, 1730 Goldbach studies sums of three and four squares.
11 Oct. 17, 1730 Euler mentions another theorem by Fermat: “Any number is the

sum of three triangular numbers.”
15 Nov. 25, 1730 By studying prime divisors of numbers 2p−1, Euler discovered

“Fermat’s Little Theorem”.

Goldbach thus thought that once Euler could prove that every prime p = 8n + 3 has the
form p = 2a2 + b2, he should also be able to prove3 the claim that every prime 4m + 3
can be written in the form 2a2 + b2 + c2. The claim that every odd number 2m + 1 is
represented by the ternary quadratic form 2a2 + b2 + c2 is equivalent to

4m + 2 = 4a2 + 2b2 + 2c2 = (2a)2 + (b − c)2 + (b + c)2,

hence follows from a special case of the Three-Squares Theorem.

3In his reply, Euler remarks that he is unable to deduce the second claim from the first:

If the proposition that 8m + 3 equals 2a2 + b2 whenever 8m + 3 is a prime number is true, I do
not see that 4n + 3 must always equal 2a2 + b2 + c2 whenever 4n + 3 is a prime number.
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Fermat’s Theorems in the Euler-Goldbach correspondence II

# letter content

40 Sept. 9, 1741 Euler studies prime divisors of x2+y2, x2−2y2, and x2−3y2.
47 March 6, 1742 Euler proves “a theorem of Fermat’s” according to which

primes p = 4n+3 cannot divide a sum of two squares a2+b2

except when both a and b are divisible by p.
52 June 30, 1742 Euler claims that prime numbers 4n + 1 are represented

uniquely as a sum of two squares. He also mentions that 641
divides 232 + 1, thereby disproving Fermat’s claim that all
numbers 22n + 1 are prime.

56 Oct. 27, 1742 Euler has written to Clairaut, asking him “whether Fermat’s
manuscripts might still be found”.

72 Aug. 24, 1743 Euler sketches the idea of infinite descent.
73 Sept. 28, 1743 Goldbach, with considerable help by Euler, gives a new proof

of Euler’s result that primes p = 4n+3 do not divide numbers
of the form a2 + 1.

74 Oct. 15, 1743 Euler claims that if a number is a sum of two (three, four)
rational squares, then it is a sum of two (three, four) integral
squares.

87 Feb. 16, 1745 Euler shows that numbers represented in two different ways
as a sum of two squares must be composite.

114 April 15, 1747 Goldbach is skeptical about some of Fermat’s claims, i.e. that
every number is a sum of three triangular numbers, or that
every integer 8n + 3 is the sum of three squares.

115 May 6, 1747 Euler proves the Two-Squares Theorem except for the follow-
ing lemma: There exist integers a, b such that an − bn is not
divisible by the prime 4n + 1.

125 Feb. 13, 1748 Euler writes that the proof of the Three-Squares Theorem
ought to resemble his proof for two squares. Euler mentions
“Fermat’s Last Theorem”.

Goldbach also observes that if 2n + 1 = 2a2 + b2 + c2, then e.g.

3(2n + 1) = 6n + 3 = (a + b + c)2 + (a + b − c)2 + (2a − b)2 + c2

is a sum of four squares. In his reply [EG127; May 4, 1748], Euler shows that Goldbach’s
observations are special cases of the following product formula: if m = a2 + b2 + c2 + d2

and n = x2 + y2 + z2 + v2, then mn = f 2 + g2 + h2 + k2 for4

f = ax + by + cz + dv, g = bx − ay − dz + cv,

h = cx + dy − az − bv, k = dx − cy + bz − av.
(1)

4Euler’s notation and choice of signs differ from the formulas given here.
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Fermat’s Theorems in the Euler-Goldbach correspondence III

# letter content

126 April 6, 1748 Goldbach observes that if 2n + 1 is a sum of three squares,
then 2n+3, 4n+3, 4n+6 and 6n+3 are sums of four squares.

127 May 4, 1748 Euler states the product formula for sums of four squares. He
also suggests proving theorems such as the Four-Squares The-
orem using generating functions.

138 April 12, 1749 Euler closes the gap in his proof no 115. He can prove the
Four-Squares Theorem except for the lemma: If ab and b are
sums of four squares, then so is a.

140 July 16, 1749 Goldbach knows how to prove the following special case of
Euler’s missing lemma: If 8m+4 is a sum of four odd squares,
then 2m + 1 is a sum of four squares.

141 July 26, 1749 Euler observes that the Four-Squares Theorem follows if it
can be shown to hold for all numbers of the form n = 8n + 1
(or, more generally, for all numbers of any of the forms 8n+a
with a = 1, 3, 5, or 7).
Euler also proves special cases of the “missing link” in his
proof of the Four-Squares Theorem: If p A is a sum of four
squares and p = 2, 3, 5, 7, then so is A. He also formulates a
general lemma that brings him within inches of a full proof.

144 June 9, 1750 Euler laments the fact that he can prove that every natural
number is the sum of four rational squares, but that he cannot
do it for integers.

147 Aug. 17, 1750 Euler returns to his idea of using generating functions for
proving the Four-Squares Theorem.

169 Aug. 4, 1753 Euler mentions “another very beautiful theorem” in Fermat’s
work: “Fermat’s Last Theorem”. He remarks that he has
found a proof for exponent 3.

Actually, Euler had known the formula at least since 1740, as his notebooks (see Pieper
[12]) show.

A year later, on April 12, 1749, Euler returns to the problem of Four-Squares and remarks:

I can almost prove that any number is a sum of four or fewer squares; indeed,
what I am lacking is just one proposition, which does not appear to present
any difficulty at first sight.

In fact, Euler [EG138] announces a plan for proving the theorem: he introduces the symbol
4 for denoting sums of four (or fewer) squares, and then states:

1. If a = 4 and b = 4 , then also ab = 4 .

2. If ab = 4 and a = 4 , then also b = 4 .
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3. Corollary: . . . If ab = 4 and a �= 4 . . . , then also b �= 4 .

4. If all prime numbers were of the form 4 , then every number at all should be con-

tained in the form 4 .

5. An arbitrary prime number p being proposed, there always is some number of the
form a2 + b2 + c2 + d2 which is divisible by p, while none of the numbers a, b, c,
d themselves is divisible by p.

6. If a2 +b2 + c2 +d2 is divisible by p, then, however large the numbers a, b, c, d may
be, it is always possible to exhibit a similar form x2 + y2 + z2 + v2 divisible by p in
such a way that the single numbers x , y, z, v are no greater than half the number p.

7. If p is a prime number and therefore odd, the single numbers x , y, z, v will be smaller
than 1

2 p, so x2 + y2 + z2 + v2 < 4 · 1
4 p2 = p2.

8. If p is any prime number, it will certainly be the sum of four or fewer squares.

Euler remarks that 2. “is the theorem on which the whole matter depends, and which I
cannot yet prove”. The other claims are proved by him except for the fifth; here Euler
writes “The proof of this is particularly remarkable, but somewhat cumbersome; if you
like, it can make up the contents of an entire letter in the future”. A modern proof (actually
it goes back to Minding [11]) of a statement slightly weaker than 5 goes like this: The
quadratic polynomials −x2 and 1 + y2 each attain p+1

2 distinct values modulo p, hence
there must exist x, y with 1 + y2 ≡ −x2 mod p, and then p | x2 + y2 + 1.

The last claim is proved by descent: if there is a counterexample p, the previous proposi-
tions allow Euler to find a prime q < p which cannot be written as a sum of four squares:
contradiction!

In [EG140; June 16, 1749], Goldbach takes up a special case of Euler’s missing lemma
and writes:

On the other hand, I think the proof of this proposition is within my power: If
any number is the sum of four odd squares, the same number is also the sum
of four even squares, or: four odd squares equal to 8m + 4 being given, there
are also four squares for the number 2m + 1.

In his reply [EG141; July 26, 1749], Euler proves this remark as follows:

Let 8m +4 = (2a +1)2 + (2b +1)2 + (2c +1)2 + (2d +1)2; then, on dividing

by 2, since (2p+1)2+(2q+1)2

2 = (p + q + 1)2 + (p − q)2,

4m + 2 = (a + b + 1)2 + (a − b)2 + (c + d + 1)2 + (c − d)2,

so 4m + 2 = 4 . Since, however, 4m + 2 is an oddly even number, two of
these four squares must be even and two odd 5. So one will have

4m + 2 = (2 p + 1)2 + (2q + 1)2 + 4r2 + 4s2,

5If an odd number of squares is odd, then the sum of squares is odd; thus there must be 0, 2 or 4 even squares.
In the first and the third case, the sum is divisible by 4.
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therefore

2m + 1 = (p + q + 1)2 + (p − q)2 + (r + s)2 + (r − s)2,

and consequently

8m + 4 = 4(p + q + 1)2 + 4(p − q)2 + 4(r + s)2 + 4(r − s)2,

QED.

In slightly modernized form, we can formulate the essence of Euler’s result as follows:

Lemma 1 If 2n = a2 + b2 + c2 + d2 is a sum of four squares, then so is n.

Proof . We can permute a, b, c, and d in such a way that a − b and c − d are even. But then

n =
(a + b

2

)2 +
(a − b

2

)2 +
(c + d

2

)2 +
(c − d

2

)2
,

and we are done. �

Goldbach’s remark and the simplicity of the proof lead Euler to the realization that he
could go further; in the same letter, Euler treats the analogous

Lemma 2 If 3n = F2 + G2 + H 2 + K 2 is a sum of four squares, then so is n.

Proof . We can write F = f + 3r , G = g + 3s, H = h + 3t , and K = k + 3u. Up to
permutation and choices of signs, there are the following cases:

1. f = g = h = k = 0. Then n = 3(r2 + s2 + t2 + u2), and the product formula yields
the claim.

2. f = g = h = 1, k = 0. Then

n = 1 + 2a + 2b + 2c + 3a2 + 3b2 + 3c2 + 3d2

= (1 + a + b + c)2 + (a − b + d)2 + (a − c − d)2 + (b − c + d)2.

This completes the proof. �

Euler treats the case p = 5 in a similar way, but gets stuck with p = 7 (he does not see
how to write the expression

A = 2 + 2a + 4b + 6c + 7a2 + 7b2 + 7c2 + 7d2

resulting from ( f, g, h, k) = (0, 1, 2, 3) as a sum of four squares).

Euler returns to the case p = 7 in the postscript of his letter:

PS. The theorem for 7A = 4 , which I did not fully execute, is completed by
the following general theorem:
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Theorem 1 Setting m = a2 + b2 + c2 + d2, if m A = 4 , then also A = 4 .

Proof . Let

m A = ( f + mp)2 + (g + mq)2 + (h + mr)2 + (k + ms)2

and
f 2 + g2 + h2 + k2 = (a2 + b2 + c2 + d2)(x2 + y2 + z2 + v2); (2)

then

f = ax + by + cz + dv, g = bx − ay − dz + cv,

h = cx + dy − az − bv, k = dx − cy + bz − av,

and one gets

A = x2 + y2 + z2 + v2 + 2( f p + gq + hr + ks) + m(p2 + q2 + r2 + s2);
but from this one finds

A = (ap + bq + cr + ds + x)2 + (aq − bp + cs − dr − y)2 +
(ar − bs − cp + dq − z)2 + (as + br − cq − dp − v)2,

so A = 4 in whole numbers, QED. �

This looks exactly like the missing lemma in Euler’s plan for proving the Four-Squares
Theorem. On the other hand, Euler later repeatedly said that he did not have a proof of this
lemma, and eventually congratulated Lagrange on his proof of the theorem. So something
must be missing. In fact it is not clear where (2) comes from. For small m, this identity
can be checked by hand, which is what Euler did for m = 2, 3, 5, and 7. What Euler failed
to see at this point is that a rather simple induction proof now completes the proof of the
Four-Squares Theorem.

2 The proof of the Four-Squares Theorem à la Euler

In this section we will show that it is not difficult to complete the proof of the Four-Squares
Theorem by induction using the formulas contained in Euler’s letter no 141. Instead of
faithfully reproducing this proof here, we will use linear algebra to abbreviate calculations.
To this end, we consider the matrices

M[a, b, c, d] =




a b c d
−b a d −c
−c −d a b
−d c −b a


 .

Lemma 3 The product formula can be written in the form

M[a, b, c, d]∗M[ f, g, h, k] = M[r, s, t, u]
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where A∗ denotes the transpose of A, and where

r = a f + bg + ch + dk, s = ag − b f + ck − dh,

t = ah − bk − c f + dg, t = ak + bh − cg − d f.

In particular, A∗ A = mI for A = M[a, b, c, d], where m = a2 + b2 + c2 + d2 and I is
the 4 × 4-identity matrix.

We would like to prove the following theorem by induction on m:

Theorem 2 Every positive integer m is a sum of four squares.

Moreover, if m A = F2 + G2 + H 2 + K 2 for integers F, G, H , K , then there exist integers
a, b, c, d and x, y, z, v such that

{
m = a2 + b2 + c2 + d2, A = x2 + y2 + z2 + v2, and

M[F, G, H, K ] = M[a, b, c, d]∗M[x, y, z, v]. (3)

Proof . The theorem holds for m = 1 and a = 1, b = c = d = 0, x = F , . . . , v = K .

We will now prove the following steps:

1. m is a sum of four squares.

2. (3) holds for all A < m: this follows from the induction assumption by switching the
roles of m and A.

3. (3) holds for all A ≥ m: this is Euler’s part of the proof.

Ad 1. Assume that the theorem holds for all natural numbers < m. If m is not squarefree,
say m = m1n2 for n > 1, then m1 is a sum of four squares by induction assumption, hence
so is m.

If m is squarefree, we solve the congruence f 2 + g2 ≡ −1 mod p for every prime p | m
and use the Chinese Remainder Theorem to find integers A, F, G such that m A = F2 +
G2 + 1. Reducing F and G modulo m in such a way that the squares of the remainders
are minimal shows that we may assume that A < m. The induction assumption (we have
to switch the roles of m and A) shows that (3) holds.

Ad 3. Write m A = F2+G2+H 2+K 2, and define integers −m
2 < f, g, h, k ≤ m

2 using the
Euclidean algorithm: F = f +mr , G = g +ms, H = h +mt , and K = k +mu. Then we
have M[F, G, H, K ] = M[ f, g, h, k]+ mM[r, s, t, u]. Now f 2 + g2 + h2 + k2 ≤ m2 is
divisible by m, say = m B for some number B ≤ m. If B = m, then f 2 = g2 = h2 = k2

and our claim holds; if B < m, then the induction assumption guarantees the existence
of integers x , y, z, v with M[ f, g, h, k] = M[a, b, c, d]∗M[x, y, z, v]. Using mI =
M[a, b, c, d]∗M[a, b, c, d] we now find

M[F, G, H, K ] = M[ f, g, h, k] + mM[r, s, t, u]
= M[a, b, c, d]∗M[x, y, z, v] + M[a, b, c, d]∗M[a, b, c, d]M[r, s, t, u]
= M[a, b, c, d]∗(M[x, y, z, v] + M[a, b, c, d]M[r, s, t, u])
= M[a, b, c, d]∗M[X, Y, Z , V ]
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with M[X, Y, Z , V ] = M[x, y, z, v] + M[r, s, t, u]M[a, b, c, d], i.e.

X = x + ar + bs + ct + du, Y = y − as + br − cu + dt,

Z = z − at + bu + cr − ds, V = v − au − bt + cs + dr.

From

m AI = M[F, G, H, K ]∗M[F, G, H, K ]
= M[X, Y, Z , V ]∗M[a, b, c, d]M[a, b, c, d]∗M[X, Y, Z , V ]
= m(X2 + Y 2 + Z2 + V 2)I

we deduce that X2 + Y 2 + Z2 + V 2 = A. �
Remark. The matrices M[r, s, t, u] form a ring isomorphic to the Lipschitz quaternions.
The proof of the Four-Squares Theorem due to Lagrange and Euler was first translated into
the language of quaternions by Hurwitz [8].
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