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1 Introduction

The binomial theorem is a fundamental result of elementary algebra, which describes the
algebraic expansion of powers of a binomial (a + b)α, where α is a complex number. It
asserts that if |x | < 1 and α is a complex number, then

(1 + x)α =
∞∑

k=0

(
α

k

)
xk .

This seemingly simple theorem allows us to study the diophantine equation

Xnr + Y n = q, (1.1)

with positive integers n, r , q , where n is assumed to be odd and n ≥ 3.

.

Das Finden ganzzahliger Lösungen polynomialer Gleichungen ist in der Regel eine
schwierige Aufgabe, wie beispielsweise die Vermutung von Fermat zeigt. In dem nach-
folgenden Beitrag untersucht der Autor für natürliche Zahlen n > 2 (ungerade) und
r > 0 sowie ganze Zahlen q �= 0 die diophantische Gleichung Xnr + Y n = q . Er be-
weist, dass die ganzzahligen Lösungen (x, y) der zur Diskussion stehenden Gleichung
der Abschätzung |x | ≤ |q|1/r genügen. Da diese Abschätzung interessanterweise un-
abhängig von n ist, findet man, dass die Gleichung Xnr + Y n = 1 nur die offensicht-
lichen trivialen ganzzahligen Lösungen besitzt. Für seinen Beweis benötigt der Autor
im wesentlichen nur den binomischen Lehrsatz sowie einige elementare Eigenschaften
der Eulerschen �-Funktion.
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We shall prove the following theorem:

Theorem 1.1 If (x, y) ∈ Z2 is a solution to the equation Xn + Y n = q, then |x | ≤ |q|.

If (x, y) is a solution to the equation (1.1), then (xr , y) is a solution to the equation Xn +
Y n = q . Thus applying Theorem 1.1 to equation (1.1) we get

Corollary 1.2 If (x, y) ∈ Z2 is a solution to the equation Xnr +Y n = q, then |x | ≤ r
√|q|.

Our proof of Theorem 1.1 is entirely elementary, the basic tool being the binomial theorem
which will finally provide us with a representation of the integer solutions of the equation
Xn + Y n = q in terms of the gamma function.

Note that the bound on |x | in the theorem does not depend on the exponent n. Applying this
to the corollary, we see that the number of integer solutions of equation (1.1) is bounded
in terms of only q and r . Observe that, if |x | ≤ r

√|q|, then |y| ≤ n
√

2|q|. Let X , Y , x , y
be unknowns and c, r fixed positive integers. We consider an exponential equation of the
form1

X x ± Y y = c with x = ry and y ≥ 3, odd. (1.2)

Corollary 1.2 reduces the study of an exponential diophantine equation of the form (1.2)
to studying a bounded number of (simpler) exponential diophantine equations of the form

ax ± by = c, (1.3)

where (a, b) takes values from a finite list of pairs of integers. Indeed, if we fix x , y under
the restriction x = ry and y ≥ 3 (odd), then Corollary 1.2 yields

|X | ≤ r
√|c| and |Y | ≤ y

√
2|c| < 2|c|. (1.4)

So it is enough to solve ax ±by = c, for the finitely many (a, b) satisfying the inequalities
(1.4). Since this holds for every x , y (with the previous restriction) this reduces equation
(1.2) to finitely many equations of the form (1.3). Also, in the special case where X , Y are
fixed, say (X, Y ) = (a, b), then LeVeque, in [6], proved that the equation ax − by = 1 has
at most one solution (in x , y).2 We conclude then that the number of solutions to equation
(1.2) (with x = ry and y ≥ 3, odd) is ≤ 2|c|2.
Specializing further to the case c = 1, we get the equation X x − Y y = 1, which is related
with the well-known Catalan conjecture [3] proved 160 years after its first appearance by
Mihăilescu [8]. This conjecture (now a theorem) asserts that the only two consecutive
positive integers which are perfect powers are 8 and 9, i.e., the equation X x − Y y = 1
has no other non-trivial solution in positive integers, except 32 − 23 = 1. The rich history
of this problem is traced in paper [7] and also gives a brief summary of the proof of
P. Mihăilescu. If y is odd and ≥ 3, then from Corollary 1.2 we get |X | ≤ 1, so X = 0

1This is really a diophantine equation in X , Y , y, since r = x/y is fixed as in (1.1).
2Except when a = 3, b = 2, in which case one finds the two solutions (x, y) = (1, 1), (2, 3).
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or 1 (the case X = −1 is not possible since X > 0); thus in the first case we derive the
contradiction Y y = −1 < 0 and the second case gives the trivial solution (X, Y ) = (1, 0).
If y is even, then x = ry is even too. Factorizing the equation X x − Y y = 1 we get
(X, Y ) = (1, 0). Thus,

Corollary 1.3 If r is a fixed positive integer, then the diophantine equation X yr − Y y = 1
admits no non-trivial integer solution in (X, Y, y) with y ≥ 2 and X, Y > 0.

If we fix x , y at nr and n, respectively, then we get the initial equation (1.1), which can
be treated by what is known as Runge’s method. Results of this sort have been established
for instance in [1, 4, 5, 9, 10]. This method, whenever it can be applied, provides a poly-
nomial bound for |x |, with respect to the absolute values of the coefficients of the defining
polynomial and the degree, which in our case is nr . Thus, these bounds are not useful if
we want to study the corresponding exponential equation.

Here is a brief outline of the paper. In Section 2 we give the proof of Theorem 1.1. In
Section 3 we obtain an algorithm for the computation of the integer solutions of equation
(1.1). Finally, the method is illustrated by some examples.

2 Solutions of the equation Xn + Y n = q

Let (x, y) be an integer solution of Xn + Y n = q . Then the binomial theorem gives

(
q − xn) 1

n =
∑

j≥0

(−1) j+1

j !
1

n

(1

n
− 1

)
. . .

(1

n
− ( j − 1)

)
q j x1−nj .

Note that the binomial series is convergent when |x |n > |q|.
Applying repeatedly the functional equation of the gamma function z�(z) = �(z + 1), we
see that

j−1∏

i=0

(1

n
− i

)
= (−1) j�( j − 1

n )

�(− 1
n )

.

Thus

(q − xn)
1
n =

∑

j≥0

(−1) j+1

j !
(−1) j�( j − 1

n )

�(− 1
n )

q j x1−nj

= − 1

�(− 1
n )

∑

j≥0

�( j − 1
n )

j ! q j x1−nj .

We set

a j = �( j − 1
n )

j ! ,
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so that (
q − xn) 1

n = − x

�
(
− 1

n

)
∑

j≥0

a j

( q

xn

) j
. (2.1)

All these equalities are valid if |x |n > |q|.
Recall that a function f (x) is called completely monotonic (c.m.) on an interval I , if
(−1)n f (n)(x) ≥ 0 for every non-negative integer n and every x ∈ I .

Lemma 2.1

(i) Let a + 1 ≥ b > a, α = max(−a,−c), and

g(x; a, b, c) = (x + c)a−b �(x + b)

�(x + a)
(x > α).

Then, 1/g(x; a, b, c) is c.m. on the interval (b,∞), if c ≥ a.

(ii) We have
k−1∑
j=0

a j = −nbk, where

bk =
�

(
k − 1

n

)

(k − 1)! .

(iii) We have lim
k→∞ bk = 0.

Proof . (i) See [2, Theorem 3 (ii)].

(ii) This follows via induction on k from the functional equation

�(1 + z) = z�(z) (z ∈ C \ Z≤0).

(iii) Using the notation of part (i) of our lemma, we set a = −1/n, b = 0. Then a + 1 ≥
b > a. Let

g(x) = (x + c)a−b �(x + b)

�(x + a)
,

then 1/g(x) is c.m. on (0,∞) for c ≥ −1/n. Thus,

1

g(x)
= (x + c)

1
n

�
(

x − 1
n

)

�(x)

is decreasing on (0,∞), for some fixed c > 0. The same holds true, if x = k ∈ Z>0.
Thus,

rk = (k + c)
1
n

�
(

k − 1
n

)

�(k)

is a decreasing sequence. Therefore rk < r2, for k > 2. So

(k + c)
1
n

�
(

k − 1
n

)

�(k)
< r2,
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hence

0 ≤
�

(
k − 1

n

)

�(k)
= bk < r2(k + c)−

1
n → 0,

when k → ∞. The result follows. �

Remark. Instead of deducing (iii) from part (i) of the lemma, one may for instance apply
Stirling’s formula for the gamma function.

Proof of Theorem 1.1. We proved in Lemma 2.1 that
∞∑

j=0
a j = 0, so

−a0 = −�

(
− 1

n

)
=

∞∑

j=1

a j .

Let (x, y) be an integer solution of the equation Xn + Y n = q . Relation (2.1) gives

�

(−1

n

)
y = �

(−1

n

)
(q − xn)

1
n = −a0x − x

∑

j≥1

a j

( q

xn

) j
,

thus ∣∣∣∣�
(−1

n

)∣∣∣∣ |y + x | ≤
∑

j≥1

|a j | |q| j

|x | j n−1
<

∑

j≥1

|a j | |q| j n−1

|x | j n−1
.

Suppose that |x | > |q|. Then all the previous inequalities are valid since the series are
convergent. Thus,

∣∣∣∣�
(−1

n

)∣∣∣∣ |y + x | <
∑

j≥1

|a j |.

Since a j > 0 for j > 0, we get

∑

j≥1

|a j | =
∑

j≥1

a j = −a0 = |a0| =
∣∣∣∣�

(−1

n

)∣∣∣∣ .

So ∣∣∣∣�
(−1

n

)∣∣∣∣ |y + x | <
∑

j≥1

|a j | = |a0| =
∣∣∣∣�

(−1

n

)∣∣∣∣ .

It follows that |y + x | < 1, thus |y + x | = 0. So y = −x . On the other hand xn + yn =
q , thus replacing y with −x , we get xn + (−1)nxn = q . Since n is odd, we get the
contradiction q = 0. We conclude therefore that |x | ≤ |q|. �
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3 An algorithm for the solution of the equation Xnr + Y n = q

As before, let (x, y) ∈ Z
2 with xnr + yn = q . The only interesting case is xy < 0. Let

x > 0 and y < 0. We set y = −z, where z > 0. Then we get xnr − zn = q , thus

(xr − z)P(x, z) = q, where P(x, z) = xnr−r + xnr−2r z + . . . + xr zn−2 + zn−1.

Hence (xr − z)|q . So we get z = xr − h for some divisor h of q . Substituting this into
P(x, z), we then compute the integer roots of the equation

P(x, xr − h) = q

h
.

Thus, we get

nxnr−r + . . . + xr zn−2 + hn−1 = q

h
,

so

xr |
(

hn−1 − q

h

)
= hn − q

h
.

The same holds true, if x < 0 and y > 0. So we get the following algorithm:

Input. n, r , q positive integers with n ≥ 3, odd.

Output. The integer solutions of the equation (1.1).

1. Compute the divisors of q .

2. For each divisor h of q compute the rational number kh = (hn − q)/h.

3. Compute the set Sh of the divisors of kh .

4. Compute the set S′
h of elements of Sh which are ≤ r

√|q|.
5. The integer solutions of (1.1) are

{(x, y) ∈ Z
2 | xr ∈ S′

h with xnr + yn = q},
where h runs through the set of divisors of q .

Below we give some examples. Here the values of q have been chosen experimentally,
using Maple, in order to give non-trivial solutions to the diophantine equation (1.1).

For (n, r, q) = (3, 2, 2 985 985), we get (x, y) = (±12, 1), (±1, 144).

For (n, r, q) = (3, 3, 10 604 499 381), we get (x, y) = (13, 2).

For (n, r, q) = (3, 1, 3 383), we get (x, y) = (15, 2), (2, 15).

For (n, r, q) = (5, 2, 576 650 390 657), we get (x, y) = (±15, 2).

For (n, r, q) = (5, 1, 102 400 032), we get (x, y) = (2, 40), (40, 2).

For (n, r, q) = (15, 1, 1 453) and (n, r, q) = (15, 1, 2 141), there is no integer solution.

In all these examples it took a few seconds to find the results on a Pentium 2.6 GHz PC.
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[8] Mihăilescu, P.: Primary cyclotomic units and a proof of Catalan’s conjecture. J. Reine Angew. Math. 572
(2004), 167–195.

[9] Schinzel, A.: An improvement of Runge’s theorem on diophantine equations. Comment. Pontificia Acad.
Sci. 2 (1969), 1–9.

[10] Tengely, Sz.: On the Diophantine equation F(x) = G(y). Acta Arith. 110 (2003) 2, 185–200.

Konstantinos A. Draziotis
Kromnis 33
54454 Thessaloniki, Greece
e-mail: drazioti@gmail.com


