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Gegenwärtig arbeitet sie an der Hochschule RheinMain in Wiesbaden über Krypto-
graphie.

Jörn Steuding promovierte an der Universität Hannover. Seit 2006 ist er Professor für
Zahlentheorie an der Universität Würzburg.

Dedicated to Prof. Dr. K.-H. Indlekofer at the occasion of his 65th birthday

1 The Calkin-Wilf matrix iteration

The Calkin-Wilf tree is generated by the iteration

a

b
�→ a

a + b
,

a + b

b
,

starting from the root 1
1 ; we call a

a+b the left child and a+b
b the right child of a

b .

.

Obwohl die rationalen Zahlen bekanntlich abzählbar sind, ist eine
”
vernünftige“ sys-

tematische Aufzählung nicht offensichtlich. Eine übersichtliche Möglichkeit bietet der
sogenannte Calkin-Wilf-Baum. Dieser Graph mit der Wurzel 1 listet sukzessive alle
positiven rationalen Zahlen nach einer sehr einfachen Iterationsvorschrift auf. In dem
nachfolgenden Beitrag betrachten die Autoren diese Iterationen aus dem Blickwinkel
ganzzahliger (2 × 2)-Matrizen mit Determinante 1 und können daraus Erkenntnisse
für Calkin–Wilf-Bäume mit beliebigen reellen Wurzeln gewinnen. Damit können sie
beispielsweise klären, welche Zahlen in einem Baum mit beliebiger reeller Wurzel
auftreten.
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The first iterations lead to
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Calkin & Wilf [5] have shown that this infinite tree contains any positive rational number
once and only once, each of which represented as a reduced fraction. Reading the tree line
by line, the Calkin-Wilf enumeration of Q+ is starting as follows:
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This sequence satisfies the iteration

x1 = 1, xn+1 = 1/(2[xn] + 1 − xn),

where [x] denotes the largest integer ≤ x ; this observation is due to Newman (cf. [13]),
answering a question of Knuth, resp. Vandervelde & Zagier (cf. [17]). The sequence
of the denominators is called the Stern-Brocot sequence and was already investigated by
Eisenstein [7] in 1850, Stern [18] in 1858, and Brocot [4] in 1860. The Calkin-Wilf enu-
meration of the positive rationals has many interesting features. For instance, it encodes
the hyperbinary representations of all positive integers (see Calkin & Wilf [5]), and it can
be used as a model for the game Euclid (see Hofmann, Schuster & Steuding [10]). A
polynomial analogue was recently given by Dilcher & Stolarsky [6]. There are quite many
articles on this or related topics, e.g. the paper [11] of Lagarias & Tresser on properties of
the Farey tree. We apologize for the incomplete list of references and we are grateful for
any information concerning publications with respect to this theme.

In this note we study new diophantine aspects of the Calkin-Wilf tree.

Consider the two 2 × 2 matrices

U =
(

1 0
1 1

)
and T =

(
1 1
0 1

)
,

and their action as Möbius transforms on the upper half-plane

Uz = z

z + 1
and T z = z + 1.

Specializing z = a
b with positive integers a, b, we obtain the iteration which builds the

Calkin-Wilf tree from the root 1
1 . Now denote by I the unit matrix. Then we may read the
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Calkin-Wilf iteration as successive applications of the transforms U and T applied to I .
The first generations of the corresponding tree are

I =
(

1 0
0 1

)

U =
(

1 0
1 1

)
�������

T =
(

1 1
0 1

)
�������

U2 =
(

1 0
2 1

)
				

T U =
(

2 1
1 1

)






U T =
(

1 1
1 2

)
����

T 2 =
(

1 2
0 1

)
����

In the sequel we are concerned with the monoid �CW consisting of all PSL2(Z) matrices
with non-negative integer entries and determinant 1. Note that PSL2(Z) = SL2(Z)/ ± I

is the modular group which is generated by the two matrices T and S =
(

0 −1
1 0

)
. Our

first aim is

Lemma 1. Any M ∈ �CW has a unique representation

M = U �n T rn . . . U �2 T r2U �1 T r1 ,

where � j , r j ∈ {0, 1} such that � j + r j = 1 for j = 1, . . . , n.

The lemma implies that �CW is the injective image of the Calkin-Wilf iteration. The
representation as a product of matrices U � j T r j with 0 ≤ � j , r j ≤ 1 and � j + r j = 1
reflects the path from the root I to the position of M in the Calkin-Wilf tree; if � j = 1 the
path turns to the left, otherwise r j = 1 and the path turns to the right in the j -th generation.
The proof is more or less the same as the one of Calkin & Wilf [5]. A different (tree-free)
proof of the statement of the lemma was given by Alperin [2].

Proof. First of all we observe that

Un =
(

1 0
n 1

)
and T n =

(
1 n
0 1

)
.

Since the entries of U T and T U are all positive, it follows that matrices M obtained by
the Calkin-Wilf iteration and having zero entries are of the form M = Un or M = T n for
some n ∈ N0. Moreover, zero entries can only appear in non-diagonal positions. Now we

prove the existence of the desired representation. For an arbitrary M =
(

a b
c d

)
∈ �CW

consider the matrices

U−1 M =
(

1 0
−1 1

) (
a b
c d

)
=

(
a b

c − a d − b

)

and

T −1 M =
(

1 −1
0 1

) (
a b
c d

)
=

(
a − c b − d

c d

)
,

both having determinant 1. Since ad − bc = 1, exactly one of these matrices has non-
negative entries and belongs to �CW. We now assume that �CW contains elements without
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the desired representation and choose M =
(

a b
c d

)
with this property and minimal trace

a + d . Suppose that U−1 M lies in �CW, having trace a + d − b. The minimality property

of M implies that b = 0. Hence U−1 M =
(

a 0
c − a d

)
, and consequently a = d = 1.

Therefore, U−1 M =
(

1 0
c − 1 1

)
= Uc−1, and we obtain the contradiction M = Uc. The

other case T −1 M ∈ �CW leads to the inconsistency M = T b. It remains to prove that
the representation is unique. Assume that M has two representations, then so have both
U−1 M and T −1 M too; again we get a contradiction by the minimality of the trace. The
lemma is proved. �

In the sequel we shall study the Calkin-Wilf iteration with respect to different initial values.
This is not entirely new. For relations between continued fractions and the modular group
we refer to Series [15] and Hockman [9]; indeed most of their methods apply to the Calkin-
Wilf iteration, too.

2 Continued fractions and equivalent numbers

It is well-known that each real number α has a representation as a regular continued frac-
tion

α = a0 + 1

a1 + . . .
+ 1

am + . . .

with a0 ∈ Z and am ∈ N for m ∈ N. This representation is finite if and only if α is rational.
In this case the representation is unique if the last partial quotient satisfies am ≥ 2 provided
m ∈ N; if α is irrational, the continued fraction is infinite and the representation is unique.
We shall use the standard notation α = [a0, a1, . . . , am , . . .]. Continued fractions are of
special interest in the theory of diophantine approximation. As Bird, Gibbons & Lester
[3] showed, the n-th generation of the rational Calkin-Wilf tree consists exactly of those
rationals having a continued fraction expansion [a0, a1, . . . , am] for which the sum of the
partial quotients a0 + a1 + . . . + am is equal to n (actually, their reasoning is based on
Graham, Knuth & Patasnik [8] who gave such a description for the related Stern-Brocot
tree).

Given a reduced fraction α in the rational Calkin-Wilf tree with continued fraction expan-
sion

α = [a0, a1, . . . , am−2, am−1, am],
we associate the path

Lam−1Ram−1Lam−2 · · · La1Ra0 if m is odd, and

Ram−1Lam−1Ram−2 · · · La1Ra0 if m is even;
note that am − 1 ≥ 1 for m ∈ N. The notation Ra with a ∈ N0 means: a steps to the right,
whereas Lb with b ∈ N0 stands for b steps to the left. Then, starting from the root 1

1 and
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following this path from left to right, we end up with the element α. This follows easily
from the iteration with which the tree was built (this claim is essentially already contained
in Lehmer [12] as observed by Reznick [14]) and so it can be generalized to other values
for the root of the tree. However, we are interested in representations with respect to the
matrix monoid �CW. We observe that

T [a0, a1, a2, . . .] = [a0 + 1, a1, a2, . . .].
For the mapping by U we distinguish the cases α > 1 and 0 < α < 1; the case of α = 1
is covered by the rational Calkin-Wilf iteration. We find

U [a0, a1, a2, . . .] =
{

[0, 1, a0, a1, a2, . . .] if a0 > 0,

[0, a1 + 1, a2, . . .] if a0 = 0.

Of course, the conditions on a0 being positive or being equal to zero can be replaced by
α > 1 or 0 < α < 1. We observe that in both cases, T α and Uα have the same tail of the
continued fraction expansion as α.

Two real numbers α and β are said to be equivalent if there exist integers a, b, c, d

β = aα + b

cα + d
with ad − bc = ±1.

Serret [16] proved that any two real numbers α and β are equivalent if and only if their
continued fraction expansions are identical from some index onwards (see also [19]). Con-
sequently, equivalent numbers can be approximated by rationals with the same quality.
More precisely, define the Markoff constant of a real number α by

λ(α) = lim inf
q→∞ q‖qα‖,

where ‖x‖ is the distance between x and the nearest integer. Then λ(α) = λ(β) if α and
β are equivalent. It is easily seen that λ(α) 	= 0 implies that the inequality∣∣∣∣α − p

q

∣∣∣∣ <
λ(α) + ε

q2

has infinitely many solutions in integers p, q for any fixed positive ε.

It is an easy exercise to show that equivalence of real numbers is indeed an equivalence
relation and to deduce that any two rational numbers are equivalent. Thus, the Calkin-Wilf
tree with root 1 is an enumeration of all positive numbers which are equivalent to 1. If the
root α of the Calkin-Wilf iteration is a quadratic irrational, we obtain an enumeration of
all positive equivalent numbers to α; however, the situation is different if the root is neither
rational nor quadratic irrational.

Theorem 1. The Calkin-Wilf tree associated with a positive real number α contains any
positive number β of the form

β = aα + b

cα + d
with a, b, c, d ∈ N0, ad − bc = +1;
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all these numbers β have the same tail in their continued fraction expansion as α. The set
of all these β’s is an enumeration of all positive numbers equivalent to α if and only if α

is rational or quadratic irrational; in the latter case there exist cycles.

First we illustrate the theorem by an example. Here we cleared the denominators from
square roots and indicate, as usual, by a bar the period of a continued fraction expansion.

√
2

2 =[0,1,2]

√
2−1=[0,2]


1+

√
2

2 =[1,1,2]

�����������

1−
√

2
2 =[0,3,2]

���
√

2=[1,2]

���� √
2+3
7 =[1,1,1,2]

��
2+

√
2

2 =[2,1,2]

��

√
2+1=[2]

���

√
2

2 =[0,1,2]
��

Indeed, we find that z �→ U T T Uz has the fixed point z =
√

2
2 (to check this note that

U T T Uz = 3z+2
4z+3 ) and that z �→ T UU T z has the fixed point z = √

2.

Proof. First, we shall show that any positive equivalent number β of the prescribed form
is represented by the tree. Assume that 0 < α < 1 and that β is equivalent to α. Then, by
Lemma 1, there exists a matrix M ∈ �CW such that

β = Mα = U �n T rn . . . U �2 T r2U �1 T r1α

with � j , r j ∈ {0, 1}. Hence, β appears in the Calkin-Wilf tree with root α.

Now we assume that α is neither rational nor quadratic irrational. Then there exist positive
numbers β which are equivalent to α but do not appear in the Calkin-Wilf tree associated
with α. To see that we consider

β =
(−1 n

0 1

)
α = n − α,

which is positive if we take n to be any integer greater than α, and, by Serret’s theo-
rem, equivalent to α; however, it is not of the prescribed form. Suppose it does, then

β =
(

a b
c d

)
α for a, b, c, d ∈ N0 and ad − bc = 1. It follows that

(−1 n
0 1

) (
a b
c d

)
α = α,

and thus α would be the fixed point of the modular group, i.e., a root of a quadratic equation
defined over Z, a contradiction to our assumption.

It remains to consider fixed points. Given any M =
(

a b
c d

)
∈ PSL2(Z), the fixed point

equation Mz = z is either a linear or a quadratic equation in z. It is linear if and only
if c = 0 in which case a fixed point would be rational; however, thanks to the work of
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Calkin & Wilf we know that there are no fixed points for any rational root α. Otherwise,
if c 	= 0, the equation is of degree two with integer coefficients, and so any fixed point is a
quadratic irrational. It is well-known that an irrational number has an ultimately periodic
continued fraction expansion if and only if it is quadratic irrational. Hence it follows that
any element in a quadratic irrational Calkin-Wilf tree appears infinitely often. The theorem
is proved. �

To illustrate the last part of the proof note that(
0 1
1 −1

) √
2 = √

2 + 1 =
(

1 1
0 1

) √
2;

this equation is false if we replace
√

2 by any number which is not a fixed point of(−1 2
1 −1

)
.

3 Mean-value statistics
Statistical properties of the rational Calkin-Wilf tree were (independently) investigated by
Alkauskas & Steuding [1], Reznick [14], and others. The set of all elements of the tree
which are obtained by n − 1 iterations is called the n-th generation and is denoted by
CW(n) = {x (n)

j } j , where the x (n)
j are the elements ordered according to their appearance

in the n-th line of the Calkin-Wilf tree. So Q+ = ⋃∞
n=1 CW(n). In [1, 14] the mean-value

of the elements of the n-th generation of the rational Calkin-Wilf tree was computed.1

Actually, in [1] an exact formula for the sum �(n) of all elements of the n-th generation
of the Calkin-Wilf tree was obtained:

Theorem 2. For any n ∈ N,

�(n) :=
2n−1∑
j=1

x (n)
j = 3 · 2n−2 − 1

2
.

Since the number of elements of the n-th generation is 2n−1, the mean-value of CW(n) is
equal to 21−n�(n) which tends to 3

2 as n → ∞. For the sake of completeness we sketch
the combinatorial proof from [1]:

Proof by induction on n. The statement of the theorem is correct for n = 1 and n = 2.
Now suppose that n ≥ 3. In order to prove the statement for n we first observe a symmetry
in the Calkin-Wilf tree with respect to its middle: for n ≥ 2,

x (n)
j = a

b
⇐⇒ x (n)

2n−1+1− j
= b

a
; (1)

this is easily proved by another induction on n (and we leave its simple verification to the
reader). Further, we note that x (n)

j ≤ 1 if and only if j is odd; here equality holds if and
only if n = 1.

1Another approach is due to Wirsing who informed the second author by private communication.
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Now we start to evaluate �(n). For this purpose we compute

y(n)
j :=

{
x (n)

j + x (n)

2n−1− j
for j = 1, 2, . . . , 2n−2 − 1,

x (n)
j + x (n)

2 j for j = 2n−2,

and add these values over j = 1, 2, . . . , 2n−2. Clearly, �(n) = ∑2n−2

j=1 y(n)
j .

First, assume that j is odd. Then both, x (n)
j and x (n)

2n−1− j
are strictly less than 1. In view of

(1) the mothers of x (n)
j and x (n)

2n−1− j
are of the form a

b and b
a , respectively. Hence,

x (n)
j + x (n)

2n−1− j
= a

a + b
+ b

a + b

and thus we find y(n)
j = 1 in this case.

Next, we consider the case that j is even. Then both, x (n)
j and x (n)

2n−1− j
are strictly greater

than 1. If the mothers of x (n)
j and x (n)

2n−1− j
are of the form a

b and a′
b′ , respectively, then

x (n)
j = a + b

b
= 1 + a

b
and x (n)

2n−1− j
= 1 + a′

b′ .

Hence, we find for their sum

x (n)
j + x (n)

2n−1− j
= 2 + a

b
+ a′

b′

and so y(n)
j = 2 + y(n−1)

k , where y(n−1)
k is either the sum of two elements x (n−1)

k and

x (n−1)

2n−2−k
or the sum of x (n−1)

2n−3 and x (n−1)

2n−2 .

It remains to combine both evaluations. Since both cases appear equally often, namely
each 2n−3 times, we obtain the recurrence formula

�(n) = �(n − 1) + (1 + 2) · 2n−3,

being valid for n ≥ 3. This implies the assertion of the theorem. �

The finite mean-value 3
2 has a simple explanation: in some sense, small values are taken

in earlier generations than large values. For instance, in each generation CW(n) takes
as many values from the interval (0, 1) as from (1,∞). What happens if we start from
another root α?

Theorem 3. For any α ∈ R which is not a negative rational number or equal to zero, the
mean-value of the Calkin-Wilf iteration with root α is equal to 3

2 .

We denote the n-th generation of the Calkin-Wilf tree with root α by CW(n)(α) and denote
its elements by x ( j )

n (α), ordered in the same way as in the case α = 1.
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Proof. We observe that for all left children we have that x (n)
j (α) − x (n)

j tends to zero as
n → ∞. However, this is not sufficient to prove the theorem but an averaging over the
whole generation will yield the proof. Put

�n := �n(α) :=
2n−1∑
j=1

(x (n)
j (α) − x (n)

j ).

Since

Uz − Uw = z − w

(z + 1)(w + 1)

and
T z − T w = z − w,

we have

�n =
2n−2∑
j=1

(U x (n−1)
j (α) − U x (n−1)

j + T x (n−1)
j (α) − T x (n−1)

j )

=
2n−2∑
j=1

(x (n−1)
j (α) − x (n−1)

j )δ
(n)
j (α),

where

δ
(n)
j (α) := 1 + 1

(x (n−1)
j (α) + 1)(x (n−1)

j + 1)
.

Next we want to show that

x (n−1)
j (α) ≥ Un−1α � 1

n
(2)

holds for all sufficiently large n. In fact, if x > 0, then (2) follows by induction on n. If
x < −1, then U x = x

x+1 > 0 which implies (2). For any x ∈ (−1, 0) there exists m ∈ N

such that − 1
m < x < − 1

m+1 ; in this case we find Um x > 0, whence (2) holds for all
sufficiently large n.

It follows from (2) that

δ
(n)
j (α) � 1 +

(
1 + 1

n

)−2

< 2

(
1 − 1

n

)

as n → ∞. Thus

�n � 2

(
1 − 1

n

)
�n−1

and by induction

21−n
2n−1∑
j=1

x (n)
j (α) − 21−n

2n−1∑
j=1

x (n)
j

= 21−n�n � 22−n
(

1 − 1

n

)
�n−1 � 2

n∏
m=2

(
1 − 1

m

)
= 2

n
.
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Now it follows from Theorem 2 that

lim
n→∞ 21−n

2n−1∑
j=1

x (n)
j (α) = lim

n→∞ 21−n
2n−1∑
j=1

x (n)
j = 3

2
.

The theorem is proved. �
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[16] Serret, J.A.: Handbuch der höheren Algebra. Vol. 1, Teubner, 1868.

[17] Sloane, N.; Plouffe, S.: The On-line Encyclopedia of integer sequences.
http://www.research.att.com/∼njas/sequences/



Diophantine aspects of the Calkin-Wilf iteration 55
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