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It is well-known that in Euclidean geometry among all quadrilaterals with prescribed edges
the cyclic quadrilateral, i.e. the quadrilateral whose vertices all belong to a single circle,
has largest area. In fact this theorem is valid for every polygon. But does it also hold in
non-Euclidean geometry?

In this note we answer this question for hyperbolic and spherical polygons. Of course
we are only interested in non-degenerate triangles. Therefore in the hyperbolic plane H 2

we study only polygons consisting of non-asymptotic triangles, i.e. triangles with vertices
belonging to the finite part of the plane, and on the sphere S2 we study only polygons
which do not exceed the half-sphere and consist of Eulerian triangles, i.e. triangles whose
angles and edges are < π .

1 Area of a non-Euclidean triangle
A good method to handle plane non-Euclidean geometry is the use of trigonometry. It
is therefore appropriate to point out some elementary formulas concerning triangles in
hyperbolic and spherical geometry.

1.1 Hyperbolic geometry

We start with the trigonometry of the hyperbolic plane. Let �ABC be a non-asymptotic
triangle, let a := BC , b := C A, and c := AB be its edges and α := ∠C AB , β := ∠ABC ,

.

Ein Sehnenviereck ist ein Viereck, dessen Eckpunkte auf einem Kreis liegen. Bekannt-
lich besitzt unter allen Vierecken mit gegebenen Seiten das Sehnenviereck die größte
Fläche. Doch gilt diese Aussage auch in der nicht-euklidischen Geometrie? Im vorlie-
genen Beitrag beantwortet der Autor diese Frage vollständig für Vierecke der hyper-
bolischen und der sphärischen Geometrie.
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and γ := ∠BC A be its angles. Then, the theorem of sine for the non-asymptotic triangle
�ABC is given by

sin α

sinh a
= sin β

sinh b
= sin γ

sinh c
,

and there are two theorems of cosine

cosh c = cosh a · cosh b − sinh a · sinh b · cos γ,

cos γ = − cosα · cosβ + sin α · sin β · cosh c.

Lemma 1. In hyperbolic geometry the edges and angles of a non-asymptotic triangle fulfil
the following equations

sinh a · sinh b · sin γ = 2 · cosh2 c

2
· cos γ + cos(α + β)

sin γ
, (1)

tan
α + β

2
= cosh a−b

2

cosh a+b
2

· cot
γ

2
. (2)

Proof. We start with the addition theorems of the hyperbolic functions

cosh(x ± y) = cosh x · cosh y ± sinh x · sinh y.

From these equations we get

cosh x + cosh y = 2 · cosh
x + y

2
· cosh

x − y

2
,

cosh(2x) = sinh2 x + cosh2 x = 1 + 2 · sinh2 x,

together with the two half-angle-relations

cosh x · cosh y = cosh2 x + y

2
+ cosh2 x − y

2
− 1,

sinh x · sinh y = cosh2 x + y

2
− cosh2 x − y

2
.

For a non-degenerate triangle in the hyperbolic plane we get immediately from the second
theorem of cosine

cos γ + cosα · cosβ

sin α · sin β
= cosh c = 1 + 2 · sinh2 c

2
,

resp.

2 · sinh2 c

2
= cos γ + cos(α + β)

sin α · sinβ
.

With the theorem of sine this gives the first equation of the lemma because of

sinh a · sinh b · sin γ = sin α · sin β

sin γ
· sinh2 c.
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For the proof of the second equation we need

(cosh a + cosh b) · sin γ = sin(α + β) · (1 + cosh c). (3)

We get this equation from sin(α + β) = sin α · cosβ + cosα · sin β, if we replace sin α
and cosα, resp. sin β and cosβ by the terms we get from the theorem of sine and the first
theorem of cosine.

From (3) and the second law of cosine we get

sin(α + β) = (cosh a + cosh b) · sin γ

1 + cosh a · cosh b − sinh a · sinh b · cos γ
.

By the half-angle-relations this is equal to

sin(α + β) = 2 · cosh a+b
2 · cosh a−b

2 · sin γ

cosh2 a+b
2 · (1 − cos γ )+ cosh2 a−b

2 · (1 + cos γ )
,

resp.

2 · tan α+β
2

1 + tan2 α+β
2

= sin(α + β) =
2 · cosh a−b

2

cosh a+b
2

· cot
γ

2

1 + cosh2 a−b
2

cosh2 a+b
2

· cot2
γ

2

;

the second equation of the lemma follows directly. �

1.2 Spherical geometry

In spherical geometry we use the same notations for the edges and angles of an Eulerian
triangle. By similar considerations as in the hyperbolic case we get

− sin a · sin b · sin γ = 2 · cos2 c

2
· cos γ + cos(α + β)

sin γ
, (4)

tan
α + β

2
= cos a−b

2

cos a+b
2

· cot
γ

2
. (5)

2 Quadrilaterals with maximal area

Let #ABC D be a quadrilateral in non-Euclidean geometry, let its edges be given by a :=
AB , b := BC , c := C D, and d := D A, and let t be the diagonal B D. The angles
of the quadrilateral shall be given by α := ∠D AB , β := ∠ABC , γ := ∠BC D, and
δ := ∠C D A; furthermore let ϕ := ∠AB D + ∠B D A and ψ := ∠C DB + ∠C B D.

Theorem 1. Among all non-Euclidean quadrilaterals with given sides there is a quadri-
lateral with largest area; it is characterized by α + γ = β + δ.
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Fig. 1 Cyclic quadrilateral

Proof. The area ε of the quadrilateral is given by the sum or the difference of the area of
the triangles �AB D and �BC D (see Fig. 1); of course the largest area can only be given
by the sums. We consider ε to be a continuous function of t . The smallest possible value of
t is given by the maximum of a−b and c−d . Starting at this value and increasing t the area
obviously also increases. In converse, the area decreases if we start at an appropriate value
of t near the maximal possible value (i.e. the minimum of a + b and c + d) and decrease
t . Between the smallest and largest possible values for t the area of the quadrilateral is
continuous as a function of t . It attains its maximum for a value t0 between the minimal
and maximal possible value; at t0 the first derivative necessarily has to vanish.

It is easy to express the area ε of the quadrilateral by its angles, because the area of �AB D
is given by

ε1 :=
{
(α + ϕ)− π �AB D ⊂ S2,

π − (α + ϕ) �AB D ⊂ H 2,

and the area of �BC D is given by

ε2 :=
{
(γ + ψ)− π �BC D ⊂ S2,

π − (γ + ψ) �BC D ⊂ H 2.

Thus ε = ε1 + ε2 depends linearily on

p =
(
α + 2 · arctan

(
Kad · cot

α

2

))
+

(
γ + 2 · arctan

(
Kbc · cot

γ

2

))

with constants Kad and Kbc only depending on a and d , resp. b and c. This follows
immediately from (5), resp. (2).

Our aim is to find the extremal value of p, resp. ε under the condition

cos a · cos d + sin a · sin d · cosα = cos B D = cos b · cos c + sin b · sin c · cos γ. (6)
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We assume that α and γ depend strictly monotone on t . Then we get

d

dt
ε1 = d

dt

(
α + 2 · arctan

(
Kad · cot

α

2

))
=

(
1 − Kad · csc2 α

2

1 + K 2
ad · cot2 α2

)
· dα

dt
,

d

dt
ε2 = d

dt

(
γ + 2 · arctan

(
Kbc · cot

γ

2

))
=

(
1 − Kbc · csc2 γ

2

1 + K 2
bc · cot2 γ

2

)
· dγ

dt
.

Reexpressing Kad by tan ϕ
2 · tan α

2 and Kbc by tan ψ
2 · tan γ

2 , we find for the first derivative
of p, resp. ε

dp

dt
=

(
1 − sinϕ

sinα

)
· dα

dt
+

(
1 − sinψ

sin γ

)
· dγ

dt
. (7)

From condition (6) we get

sin a · sin d · sin α · dα

dt
= sin b · sin c · sin γ · dγ

dt
.

Because of (4), resp. (1) this is equal to

(cosα + cosϕ

sinα

)
· dα

dt
−

(cos γ + cosψ

sin γ

)
· dγ

dt
= 0. (8)

Therefore the first derivative of p, resp. ε can only vanish under the given condition, if

sin α − sin ϕ

cosα + cosϕ
+ sin γ − sinψ

cos γ + cosψ
= 0,

resp.
2 · cos α+ϕ

2 · sin α−ϕ
2

2 · cos α+ϕ
2 · cos α−ϕ

2

= − 2 · cos γ+ψ
2 · sin γ−ψ

2

2 · cos γ+ψ
2 · cos γ−ψ

2

.

Thus

tan
α − ϕ

2
= − tan

γ − ψ

2
= tan

ψ − γ

2
,

resp.
α + γ = ϕ + ψ = β + δ. �

3 Non-Euclidean cyclic quadrilaterals
Among all quadrilaterals with edges of given length the quadrilateral with largest area
necessarily fulfils the condition of Theorem 1. This condition is valid for all cyclic quadri-
laterals.

Lemma 2. The angles of a cyclic quadrilateral #ABC D fulfil the equation

α + γ = β + δ. (9)

Proof. Let M be the center of the circumcircle of the quadrilateral. Then the triangles
�M AB , �M BC , �MC D, and �M D A are isosceles and the angles at A and B etc. are
equal. The equation follows immediately. �
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But does the quadrilateral with the largest area always have to be cyclic? In Euclidean and
spherical geometry the answer is “yes”, but in hyperbolic geometry the answer cannot be
as clear as that, because even triangles do not necessarily have a circumcircle there.

Lemma 3. In Euclidean and spherical geometry a convex quadrilateral with α+γ = β+δ
is cyclic.

Proof. In Euclidean geometry the angles of a quadrilateral #ABC D sum up to 2π ; from
the assumed equality we get therefore β+δ = π and α+γ = π . Consider the circumcircle
k of �ABC and consider AC to be a chord of it. The vertex D cannot belong to the same
side of AC as B , because the quadrilateral would not be convex in that case. By the
converse of the Common Chord Theorem and because of δ = π − β we find that the
vertex D has to be a part of the second arc of k.

In spherical geometry two great circles always intersect. Therefore we can use the follow-
ing construction:

Case 1: α �= β. Without loss of generality we may assume that α > δ and β > γ . We
construct the line f passing through A with ∠D AP = δ for each point P ∈ f and the
line g passing through B with ∠QBC = γ for each point Q ∈ g. Let h be the great circle
defined by C and D. Then let C ′ be the intersection of g and h, let D′ be the intersection
of f and h, and let E ′ be the intersection of f and g (see Fig. 2).

A

B C

D

C

E
D

f

g

h

Fig. 2 Spherical quadrilateral

�AD′ D and �CC ′ B are isosceles triangles because they have the same angle at the bot-
tom line AD, resp. BC . Thus the angle bisector at D′, resp. C ′ is the median line of AD,
resp. BC .

Let us study the triangle �AB E ′: its angle at A is given by α − δ and its angle at B is
given by β − γ . By assumption these angles are equal and �AB E ′ is therefore also an
isosceles triangle; thus the angle bisector at E ′ is the median line of AB .
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The points C ′, D′, and E ′ form a triangle. The bisectors of the angles of a triangle intersect
at the incenter of �C ′ D′ E ′, which we name U . The distance from U to B and C is equal
because the bisector of the triangle at C ′ is – by construction – the median line of BC . By
the same argument we get that U has equal distance from A, B , C , and D; i.e. #ABC D is
cyclic with center U .

Case 2: α = β, i.e. γ = δ. Then the quadrilateral is a convex isosceles trapezoid and
therefore the median line of AD is also the median line of BC . Let U be the intersection
point of AB and AD; then U is equidistant to A, B , C , and D. �

To understand the hyperbolic geometry we use the Poincaré disc model. In this model the
hyperbolic plane is given by the interior of a circle C, hyperbolic lines are represented by
arcs of circles that are orthogonal to C plus diameters of C. This model has three important
properties: angles in the model and angles in the hyperbolic plane are equal, a circle in the
hyperbolic plane is represented by a Euclidean circle, and circumcircles of the Euclidean
triangles are also circumcircles of their hyperbolic counterparts.

All Euclidean triangles have a circumcircle. In the hyperbolic context this circle is a

circumcircle if it is completely contained in the interior of C,

horocycle if it touches the boundary of C,

hypercycle if it intersects the boundary of C.

Lemma 4. In hyperbolic geometry a convex quadrilateral #ABC D with α + γ = β + δ

is inscribed into a circle, a horocycle, or a hypercycle.

Proof. We use the Poincaré disc model with boundary circle C. Within this model we
draw the quadrilateral #ABC D. Then we may consider the drawing as Euclidean and
add the Euclidean lines joining the vertices A and B , B and C , C and D, resp. D and
A (s. Fig. 3). In the Euclidean context hyperbolic lines are Euclidean circles intersecting
orthogonally the boundary of C. Thus the Euclidean angles p and p′ at A and B defined
by the hyperbolic line AB and their Euclidean counterpart are equal. The same is valid for
the other lines. If we name these angles between the Euclidean and the hyperbolic lines
with p = p′, q = q ′, r = r ′, and s = s′ we get for the Euclidean angles at A, B , C , and D

αE = s′ + α + p = s + α + p,

βE = p′ + β + q = p + β + q,

γE = q ′ + γ + r = q + γ + r,

δE = r ′ + δ + s = r + δ + s,

resp.

αE + γE = s + α + p + q + γ + r = p + β + q + r + δ + s = βE + δE .

Therefore the vertices form a cyclic quadrilateral in Euclidean geometry, i.e. there is an
Euclidean circle k joining the vertices. This circle also passes through the vertices A, B ,
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D

Fig. 3 Hyperbolic quadrilateral

C , D if we regard them as points of the hyperbolic plane. The actual meaning of k in
the hyperbolic context, i.e. if it is a circle, a horocycle, or a hypercycle, depends on its
intersection with the boundary of C (see the notes above concerning the circumcircle of
the hyperbolic triangle). �

4 Applications to spherical geometry
4.1 Cyclic polygons

In Euclidean and spherical geometry we can summarize our results as follows.

Proposition 1. In Euclidean and spherical geometry among all quadrilaterals with given
sides the cyclic quadrilateral has largest area.

Following the proof of van der Waerden [3] it is easy to extend this theorem to polygons
with n given sides.

Theorem 2. In spherical geometry among all polygons with n given sides, contained in a
half-sphere, the polygon inscribed into a circle has largest area.

Proof (see [3]). From a vertex we draw the diagonals x, y, . . . etc. (see Fig. 4). Then we
get n − 2 triangles a, b, x , x, c, y, etc. The area of the polygon is the sum of the areas
of these triangles. Of course some of them may have negative area, but it is clear that for
given x, y, . . . the area is maximal if the area of all triangles is positive. The area is thus
the sum of a continuous function depending on x, y, . . . These parameters are taken from
a closed region defined by the triangle inequalities

a + b ≥ x, x + y ≥ c, etc.

The function therefore has a maximum.
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Fig. 4 Cyclic polygon

What does this maximum look like? If we only change the parameter x we get from the
already proven result that the vertices A, B , C , and D are on the boundary of a circle.
By the same argument we get that B , C , D, E are also on the boundary of a circle. The
vertices B , C , and D belong to both circles and thus these circles are equal, i.e. the vertices
A, B , C , D, and E belong to the boundary of the same circle. If we apply this argument
to all other vertices of the maximal polygon we get that the maximal polygon has to be
cyclic. �

4.2 Tangential polygons

The polar counterpart of a cyclic polygon is the tangential polygon, i.e. a polygon which
is circumscribed an incircle. If a, b, c, and d denote the sides of the quadrilateral, it is
characterised by

a + c = b + d,

and without any further proof we get from the duality of spherical geometry:

Theorem 3. Among all polygons with n given angles the polygon circumscribing a circle
has smallest area.
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[2] Sigl, R.: Ebene und Sphärische Trigonometrie. H. Wichmann-Verlag, Karlsruhe 1977.

[3] van der Waerden, B.L.: Polygone mit maximalem Flächeninhalt. Elem. Math. 5 (1950), 121–144.
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