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1 Introduction

Consider a set of m points scattered on a sphere. Each such point P has a surrounding
“neighborhood” – the open set of points closer to P than to any of the other m − 1 points.
The mean distance from P to its neighborhood is defined in the usual way by integration,
and the mean distance from the whole sphere to the nearest of the m points is then the
weighted mean of the m neighborhood means.

In this article we estimate such mean distances for various choices of m points, including
vertex sets of the five regular polyhedra. Surprisingly, these appear to be new. For example,
given a regular tetrahedron inscribed in the unit sphere, the mean distance to the nearest
vertex is approximately 0.690737280538164. In the final section we consider distance as
a probability random variable, of which “expected value” is a synonym for mean distance.

We use the standard labeling of a right triangle ABC on the unit sphere with center O, with
vertex angles labeled α, β, γ and sidelengths (alias angles B OC, C O A, AO B) labeled

.

In der vorliegenden Arbeit geht es um die Bestimmung von mittleren Abständen auf
der Kugeloberfläche. Für eine um den Nordpol zentrierte Kugelkappe der nördlichen
Hemisphäre wird der mittlere Abstand zum Nordpol durch

”
Aufsummieren“ (Integra-

tion) der infinitesimalen Flächenanteile der Kugelkappe multipliziert mit der Distanz
zum Nordpol im Verhältnis zur Gesamtfläche der Kugelkappe berechnet. Wenn man
beispielsweise für die Kugelkappe die ganze nördliche Hemisphäre wählt, so ergibt als
mittlere Distanz zum Nordpol 1. In Verallgemeinerung zu diesem Ergebnis bestimmt
der Autor auch mittlere Abstände für regelmäßige sphärische Polygone zu endlichen
Punktmengen der Sphäre.
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a, b, c. By Girard’s theorem, the surface area of ABC is α + β + γ − π , and by Napier’s
pentagon,

α = arccos(tan b cot c). (1)

These fundamentals are developed in spherical trigonometry textbooks (e.g., [2], [4]), and
graphics, some interactive, are found at many websites (e.g., [1], [3]).

2 Integrals
Let R be a cap or zone on the upper unit hemisphere

z =
√

1 − x2 − y2, (2)

and let AR be the area of R. The mean of a continuous function f on R is defined by the
surface integral ∫

R

1

AR
f (x, y, z) d S.

Suppose N = (0, 0, 1), the north pole, and consider concentric circles on R, centered at
N . If s denotes the distance on R from a point on such a circle to N , then the radius of the
circle is sin s. Thus, an increment ds accounts for an area d S = (2π sin s)ds, so that the
mean distance from N to R can be found using

1

AR

∫
s d S = 2π

AR

∫
s sin s ds. (3)

The limits of integration are constants, since R is a cap or zone. For other regions we can
find mean distances starting with integrals of the form (3). Certain standard properties of
integrals will be needed. Let M(H, R) be the mean distance from a point H to a region R,
a cap, zone, or spherical triangle.

(I1) If R′ is a rotation of R about H , then M(H, R′) = M(H, R).

(I2) If R′ is a reflection of R about a line L through H , then M(H, R′) = M(H, R).

(I3) If R′ is a pairwise disjoint union of such rotations and reflections, then M(H, R′) =
M(H, R).

(I4) Weighted means: suppose that n ≥ 1, and that R′ is the union of pairwise disjoint
regions Ri having respective areas ai and mean distances mi = M(H, Ri ) for i =
1, 2, . . . , n. Let

s1 = a1m1 + a2m2 + . . .+ anmn and s2 = a1 + a2 + . . .+ an.

Then M(H, R′) = s1/s2.

(I5) If R′ is the interior of R, then M(H, R′) = M(H, R).

For example, the mean distance from the center G of a spherical equilateral triangle ABC
equals the mean distance from G to the spherical triangle G BC . Likewise, we can compute
mean distances involving other regular polygons, as in Section 6, and mean distances of
right triangles, as in Section 4. First, however, we shall examine somewhat simpler mean
distances.
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3 Caps and zones

Suppose that 0 ≤ a < b ≤ 1. Then on the unit hemisphere (2), the points satisfying
a ≤ z ≤ b comprise a cap if b = 1 and a zone otherwise. In both cases the area of the
region is 2π(b − a), and the inequality a < b is equivalent to arccos b < s < arccos a.
With N = (0, 0, 1), mean distances are found from (3):

M = 1

b − a

arccos a∫

arccos b

s sin s ds,

so that

M =
√

1 − a2 − √
1 − b2 + b arccos b − a arccos a

b − a
. (4)

If b = 1 and we write a as a variable x , then for caps,

M(x) =
√

1 − x2 − x arccos x

1 − x
.

Especially notable is the fact that M(0) = 1; that is, the mean distance from the north pole
to the northern hemisphere is simply 1 radian. The locus of a point having actual distance
1 from N is the circle in which the plane z = cos 1 meets the unit sphere. This circle has
radius sin 1, and the area of its spherical cap is 2π(1 − cos 1), leaving 2π cos 1 as the area
of the complementary zone down to the plane z = 0.

Regarding Earth as a unit sphere, the latitude of the circle at distance 1 from the north pole
– the mean latitude of the northern hemisphere – is about 32.7 degrees. It passes through
or close to Ft. Worth (Texas), San Diego (California), and Nazareth (Israel); see Fig. 1.

North Pole

Mean latitude
  north hemisphere

Equator

Nazareth

Fig. 1 The distance from the North Pole to Nazareth is 1 radian

If H is a fixed point on the equator and Z is a zone or cap having north pole N = (0, 0, 1),
then the mean distance from H to Z is π/2. To see this, rotate the configuration so that H
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a b M

0 1 1.000000000

1/4 1 0.851622425

1/2 1 0.6848532564

3/4 1 0.4775485676

7/8 1 0.3354597742

15/16 1 0.2364463375

0 1/4 1.4451327254

0 1/2 1.3151467436

0 3/4 1.5082145624

1/3 2/3 1.0435370682

1/2 0.5801952659 1.0000000000

Table 1 Mean distances from N

goes to the north pole and N goes to the equator. Then the image of Z is symmetric about
the equator, so that its mean distance to the north pole is π/2. For comparison, the mean
distance from the whole equator to the whole northern hemisphere is π/2 − 1.

As a supplement to Table 1, for fixed H and b = 1, we select values of M and solve for a:

a b M

0.930181394058 1 0.2500000000007

0.726629934235 1 0.5000000000006

0.406913243452 1 0.7500000000001

0 1 1

Table 1A Mean distances from N to caps

If a = 0 and we treat b as a variable x , then the mean distance M from the north pole
H = (0, 0, 1) to the zone from the equator a = 0 up to the plane z = b is given via (4) by

M(x) = 1 − √
1 − x2 + x arccos x

x
.

As a second supplement to Table 1, we select values of M and solve for b:
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a b M
0 0.0000000001 1.5707968367 (≈ π/2)

0 0.6190540690 1.1250000000

0 0.1413558550 1.5000000000

0 1 1

Table 1B Mean distances from N to zones

4 Spherical triangles
Suppose that ABC is a right spherical triangle labeled with A, B , C , a, b, c, α, β, γ in
the standard way, with vertex angle γ = π/2 at C . Assume that ABC lies in the northern
hemisphere (2), that N = (0, 0, 1) and O = (0, 0, 0), and let A denote the area of ABC .
Noting that b < c, let X be the point on the great circle AC N situated so that the arc AC X
has length c. Then the isosceles triangle AB X is the union of triangles ABC and C X B .
Consequently, the mean distance M from vertex A to triangle ABC is given by

M = 1

A
( c∫

0

α s sin s ds −
c∫

b

k(s) s sin s ds
)
, (5)

where the arclength k(s) is found as an angle from Napier’s pentagon as in (1):

k(s) = arccos(tan b cot s). (6)

Now suppose that U V W is an equilateral spherical triangle with vertex angle α and side-
length x ≤ π/2. By Girard’s formula, the area, A(x), of U V W is 3α− π , and solving for
α gives

A(x) = 3 arccos
( cos x

1 + cos x

)
− π.

Let C be the midpoint of arc V W . Let A = U and B = V . Then ABC is a right spherical
triangle, and the mean distance from A to ABC equals the mean distance from U to
U V W . In order to apply (5) to ABC , we have by Napier’s pentagon, or more explicitly
[4, equations (1)–(10), pp. 194–195],

c = x,

α = arccos
( cos x

1 + cos x

)
= arcsin(sin(x/2) csc x),

b = arccos(sec(x/2) cos x),

k(s) = arccos(tan b cot s),

AABC = 1

2
A(x).

Now (5) gives the following results for U V W :
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sidelength x area of U V W M(U to U V W )

π/2 ≈ 1.57079 π/2 1.0000000

arctan 2 ≈ 1.10 π/5 ≈ 0.6283 0.6854769

π/3 ≈ 1.04719 0.5512855 0.6469076

π/4 ≈ 0.78539 0.2895605 0.4815149

π/6 ≈ 0.52359 0.12293598 0.3194700

1.33540100935 1 0.8358397

1.00386508622 1/2 0.6192159

1.35907989763 π/3 0.8518439

1.21408103950 π/4 0.7551357

1.02417556740 π/6 0.6321770

1 0.49559489 0.6167529

1/2 0.11175309 0.3049730

0.814978563 0.31382189 0.5000007

0.4103134499 0.07447024 0.2500004

Table 2 Mean distance M from U to equilateral triangle U V W

5 Lunes
Let ψ ≤ π be the angle between planes P1 and P2 that pass through the center of the unit
sphere x2 + y2 + z2 = 1. The wedge-shaped region between P1 and P2 is called a lune
of angle ψ . A lune may be regarded as a 2-sided spherical polygon. In order to compute
mean distances from a point to a lune, we begin by assuming, without loss of generality,
that the endpoints of the lune are (0,−1, 0) and (0, 1, 0) and that the lune is bisected by
the xy-plane. The center of the lune is the point H = (1, 0, 0). For 0 ≤ s < ψ/2, a circle
about H at distance s has length 2π sin s. For 0 ≤ s < ψ/2, the distance from the plane
z = 0 is ≤ tan(ψ/2) cos s, so that the remaining arclength is given by

�(s) = arcsin
( tan(ψ/2)

tan s

)
sin s.

As this length occurs 4 times, we assemble the mean distance from H to the lune as

M = 1

2ψ

(
2π

ψ/2∫

0

s sin s ds + 4

π/2∫

ψ/2

s �(s) ds
)
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ψ/2 M

π/2 ≈ 1.570796 1.00000000

π/3 ≈ 1.047198 0.81680351

π/4 ≈ 0.785398 0.73335388

π/6 ≈ 0.523599 0.65925289

Table 3 Mean distance M from center H to lune of angle ψ

6 Regular spherical polygons

Suppose that Pk = V1V2 . . .Vk , for k ≥ 3, is a regular spherical polygon on a sphere. Let
A be the center (on the sphere) of Pk . Then Vi AVi+1, for i = 1, 2, . . . , k − 1, as well as
Vk AV1, are congruent isosceles triangles.

Let C be the midpoint of arc V1V2, and let B = V1. Then ABC is one of 2k congruent
right spherical triangles sharing A as a vertex. The angle V1 AV2 is one of k congruent
angles at A, so that �V1 AV2 = 2π/k; consequently �B AC = π/k, a fact to be used
in Section 8. By (I3) in Section 2, the mean distance from A to ABC equals the desired
mean distance from A to the whole polygon Pk .

7 Inscribed polyhedra

Suppose that V1, V2, . . . , Vk are the vertices of a polyhedron P inscribed in a sphere S.
Define the spherical mean distance, M(P), from S to P (or from P to S) as the mean
distance from S to the nearest vertex of P. In order to evaluate M(P), it is helpful to
recognize, for each i , the neighborhood of Vi , as defined in Section 1:

Ni = {X ∈ S : s(X, Vi ) < s(X, Vj ) for all j �= i},

where s(X, V ) denotes the distance between the points X and V .

To construct Ni , for each j �= i , let Bij be the perpendicular bisector (a great circle) of the
spherical segment Vi Vj . Of the two open hemispheres having boundary Bij , let Hij be the
one containing Vi . Then

Ni =
⋂
j �=i

Hi j .

Clearly Ni is the interior of a spherical polygon of at most k sides. If P is regular, as in
Section 8, then the polygons Ni are regular and congruent, which makes the calculation of
M(P) relatively easy. However, before turning to such calculations – in the next section –
we note that in the general case, it is helpful to regard the construction of a neighborhood
one step at a time, as illustrated here for the neighborhood of V1:
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Step 1. Construct the perpendicular bisector B12 of segment V1V2, so that H12 is the
open hemisphere containing V1. The construction is finished if k = 2, and in this case
N1 = H12.

Step 2. Otherwise, construct the perpendicular bisector B13 of segment V1V2, thus obtain-
ing the open hemisphere H13 containing V1. The construction is finished if k = 3, and in
this case N1 = H12 ∩ H13, the interior of a lune. In any case, note that the location of H23
plays no part in the determination of N1.

Continuation. If n ≥ 4, then for 4 ≤ k ≤ n, the interior of the spherical polygon
H12 ∩ H13 ∩ . . . ∩ H1k is a proper subset of the interior of the spherical polygon H12 ∩
H13 ∩ . . .∩ H1,k−1 if and only if the bisector B1k enters H12 ∩ H13 ∩ . . .∩ H1,k−1. In that
case, the segment of B1k that lies inside the larger polygon becomes part of the boundary
of the smaller polygon.

8 Regular polyhedra

The regular polyhedra, which are the surfaces of the Platonic solids, have been studied
since antiquity. Our interest here stems from the problem of spreading m points on a
sphere, uniformly in the sense that each point is equidistant from its nearest neighbors,
that all such distances are equal, and that the points do not all lie in a plane. It is well-
known that there are exactly five values of m for which this problem has a solution. If
m = 4, the points must be the vertices of a regular tetrahedron; for the other four cases,
the points must be the vertices of an octahedron, cube, dodecahedron, and icosahedron,
respectively. For each of these cases, we shall calculate the mean distance from a point on
the sphere to the nearest vertex.

For any regular polyhedron P , let

m = number of vertices of P;
n = number of faces of P;
p = number of edges of the face polygons of P;
q = number of edges of P that meet at each vertex of P;

P ′ = the polyhedron whose vertices are the centers of the faces of P.

Note that P ′ is a regular polyhedron, known as the dual of P . The dual of the tetrahedron
is a tetrahedron; the cube and octahedron are a dual pair, as are the dodecahedron and
icosahedron. Table 4 summarizes some of the main features of regular polyhedra.

Now moving from P to its circumsphere, S, let

O = the center of S;
P = projection of P from O onto S;
P ′ = projection of P ′ from O onto S.

Let A be a vertex of P . The neighborhood N(A), as defined in Section 7, has boundaries
formed by the perpendicular bisectors (which are great circles of S) of the q edges of P
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P m n p q P ′
tetrahedron 4 4 3 3 tetrahedron
cube 8 6 4 3 octahedron
octahedron 6 8 3 4 cube
dodecahedron 20 12 5 3 icosahedron
icosahedron 12 20 3 5 dodecahedron

Table 4 Regular polyhedra

that meet in A. Thus, A is the center of a regular spherical q-gon – indeed, the interior of
this q-gon is N(A) – so that the mean distance from a point on S to the nearest vertex of P
equals the mean distance from A to N(A), which equals the mean distance from A to the
interior of the right spherical triangle ABC described in Section 6. As an example, when
P is a cube, N(A) is the interior of a spherical 3-gon, illustrated as B DF in Fig. 2.

A

E

F

G

B C

D

Fig. 2 The neighborhood of A is the spherical triangle B DF

Recall from Section 6 that in the spherical right triangle ABC , we have �B AC = π/q .
This is the angle α in (5). We shall also need the angle β = �ABC . Since N(A) is one of
the n mutually congruent regular spherical polygons that comprise P ′, the point B is the
vertex common to p such polygons. Thus, the vertex angle at B is 2π/p. Let D and F
denote the vertices of N(A) that are adjacent to B , so that �DB F = 2π/p. The arc AB
bisects angle DB F , so that β = π/p. For example, in Fig. 2, �ABC = π/4.

The mean distance from A to N(A), given by (5) for a unit sphere, depends on the angle
α, sidelengths b and c, and area A = α + β − π/2. For the remainder of this section,
we assume in each case that the regular polyhedron is prescribed in a unit sphere. Starting
with α and β, the sidelengths are given (e.g., [4, p. 194]) by

cos a = cosα cscβ, cos b = cscα cosβ, cos c = cotα cotβ.
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We are now ready to apply (5) to each of the regular polyhedra.

Tetrahedron: α = π/3, β = π/3, γ = π/2, A = π/6. By (5), the mean distance from
A to ABC , and hence the mean distance from the unit sphere to the nearest vertex of the
inscribed regular tetrahedron, is approximately 0.6907372805382.

Cube: α = π/3, β = π/4, γ = π/2, A = π/12. The mean distance from A to ABC ,
and hence the mean distance from the unit sphere to the nearest vertex of the inscribed
cube, is approximately 0.4907563907213.

Octahedron: α = π/4, β = π/3, γ = π/2, A = π/12. The mean distance from A
to ABC , and hence the mean distance from the unit sphere to the nearest vertex of the
inscribed regular octahedron is approximately 0.5667786396257.

Dodecahedron: α = π/3, β = π/5, γ = π/2, A = π/30. The mean distance from
A to ABC , and hence the mean distance from the unit sphere to the nearest vertex of the
inscribed regular dodecahedron is approximately 0.3146937663893.

Icosahedron: α = π/5, β = π/3, γ = π/2, A = π/30. The mean distance from A
to ABC , and hence the mean distance from the unit sphere to the nearest vertex of the
inscribed regular icosahedron is approximately 0.38961615427.

To summarize, the five mean distances have been calculated from the angles α = π/p and
β = π/q , where p and q are the number of edges of regular polygons associated with a
polyhedron P , as described above. The pair (q, p) is widely known as the Schläfli symbol
of P , so that (p, q) is the Schläfli symbol of the dual, P ′, of P .

A final comment is that the circumsphere of P ′ lies inside that of P , so that (P ′)′ �= P ,
although (P ′)′ is of course similar to P . On the other hand, (P ′)′ is not only similar to P ,
but also (P ′)′ = P , so that we may certainly call P ′ the dual of P .

9 Probabilistic interpretation
The term “mean distance” can be interpreted as “expected distance” in the sense that this
term is used in probability theory. This interpretation extends to a variety of considerations,
but for present purposes, we assume that R is a cap or zone as in Section 3. Let P be a
uniformly distributed random point [3] on R. Let N = (0, 0, 1), and let X be the random
variable given by

X = distance from N to P.

The expected value E(X) is then the number M in (4). The density function f and distri-
bution function F are given by

f (x) =
{
(sin x)/(b − a) if arccos b ≤ x ≤ arccos a,
0 otherwise,

F(x) =



0 0 ≤ x < arccos b,
(b − cos x)/(b − a) if arccos b ≤ x ≤ arccos a,
1 if x > arccos a.
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Let Y be the distance from the equator to P , so that Y = π/2 − X . From F(x) we find the
density function of Y :

g(y) =
{
(cos y)/(b − a) if arcsin a ≤ y ≤ arcsin b,
0 otherwise.

The density functions f and g can be used to find the variances of X and Y . For example,
if a = 0 and b = 1 (so that R is the northern hemisphere), then E(X) = 1 and E(Y ) =
π/2 − 1. The identity for variance, σ 2

X = E(X2) − [E(X)]2 yields σ 2
X = π − 3, and

similarly, σ 2
Y = π − 1.

These findings may serve as a guide for probabilistic or statistical investigations involving
computer samplings [3] of millions of points uniformly distributed on a sphere.

Acknowledgement

The author thanks the referee for pointing the way toward much simpler proofs. In the orig-
inal manuscript, integrals were calculated as iterated integrals over regions in the xy-plane,
and angles α and β in Section 8 were laboriously found starting with explicit vertices, such
as (±1,±1,±1) for the cube.

References

[1] “Spherical Triangle”, http://www.walter-fendt.de/m14e/sphertriangle.htm

[2] Kells, L.M.: Plane and Spherical Trigonometry. 3rd edition, McGraw-Hill, New York 1951.

[3] MathWorld, “Sphere Point Picking”, http://mathworld.wolfram.com/SpherePointPicking.html

[4] Palmer, C.I.; Leigh, C.W.; Kimball, S.H.: Plane and Spherical Trigonometry. 5th edition, McGraw-Hill,
New York 1950.

Clark Kimberling
University of Evansville
1800 Lincoln Avenue
Evansville, IN 47722, USA
e-mail: ck6@evansville.edu


