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1 Introduction

Closing theorems, or theorems of Poncelet type, are considered to be one of the most
fascinating geometric facts. Various approaches to their proofs as well as applications
to problems of elementary geometry, theory of algebraic curves, differential equations,
billiards, elliptic integrals, etc., have been studied in many works (see, for example, [1,
2, 4, 6, 8, 10, 11, 14], and references therein). One can spot the four best known closing
theorems: Poncelet, Steiner, zigzag, and Emch theorems. We do not mention some other
results, such as, for instance, the Ponzag theorem, that are actually reformulations of one
of these four theorems.

This paper consists of two parts. First, in Section 3 we derive a general closing theorem
for families of Euclidean spheres in R

d . Then, in Sections 4–6, we observe some of its
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.

Den meisten Lesern dürften die klassischen Schließungssätze der Elementargeometrie
von Poncelet, Steiner und Emch sowie das Zigzag-Theorem bekannt sein. Beispiels-
weise zeigt der Schließungssatz von Poncelet ausgehend von einem n-Eck (n > 2),
das gleichzeitig einem Kegelschnitt C umschrieben und einem anderen Kegelschnitt
D einbeschrieben werden kann, dass es noch unendlich viele weitere n-Ecke mit die-
ser Eigenschaft gibt. In der vorliegenden Arbeit beweist der Autor einen allgemeinen
Schließungssatz für Sphären im R

d , aus dem die oben genannten klassischen Schlie-
ßungssätze durch geeignete Spezialisierung unmittelbar gefolgert werden können.
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corollaries. One of them, Theorem 2, gives a general closing principle for spheres in the
space R

3. The four classical theorems of Poncelet type are its direct corollaries (Section 5).
Another one, Theorem 3, extends the Emch closing theorem to spheres in the Euclidean
space R

d . In the second part of the paper, in Sections 7 and 8, we focus on the elementary
proof of Emch’s theorem on circular series. This theorem is the most general one among
these four classical results. The Poncelet theorem in case of two circles, the planar version
of the zigzag theorem, and the Steiner theorem are actually its special cases. This is shown
in Section 7. Therefore it would be interesting to obtain an autonomous (not relying on the
Poncelet theorem) proof of the Emch theorem using only elementary geometrical tools.
Such a proof is given in Section 7. For the sake of simplicity we restrict ourselves to the
case, when the three circles are embedded to each other. That proof is based on two aux-
iliary geometric results, Theorem 4 on four circles touching two concentric circles, and
Proposition 1 on two chains of circles inscribed in an annulus, which may be of indepen-
dent interest. Finally, in Section 8 we apply this technique to derive a generalization of the
Emch theorem to pencils of circles.

2 Four classical closing theorems

In this section we recall the statements of the four famous Poncelet type theorems. To
formulate them in a unique way it is convenient to introduce the notion of general closing
property for families of circles. This notion will be also used in the next sections, when
we generalize Poncelet type theorems to the space R

d . Suppose a circle δ and a family
of circles M are given on the plane R

2. Straight lines and points are also considered as
circles. We call a point z ∈ R

d singular for the family M if there are more than two circles
from M passing through z. Assume that the two conditions are satisfied:

(a) The circle δ does not contain singular points for M.

(b) δ /∈ M.

Let us now consider the following process. Take an arbitrary point D1 on δ and draw a
circle v1 ∈ M through it (we suppose that such a circle exists; if there are two ones, then
we take any of them). Let D2 be the second point of intersection of v1 and δ (in case of
tangency we set D2 = D1). Draw a circle v2 ∈ M through D2 different from v1 (if it does
not exist, then we set v2 = v1). Then we denote by D3 the second point of intersection of
v2 and δ, etc. We obtain a series of circles {vk}∞k=1. The process has period n if vn+1 = v1
or, which is the same, Dn+1 = D1.

Definition 1. A family of circles M is said to possess the closing property on a circle δ if
it satisfies conditions (a), (b) and the following condition:
If for some initial point D1 the process has period n ≥ 3 and all the points D1, . . . , Dn are
distinct, then it has the same period for any point D1 ∈ δ that belongs to a circle from M.

Now we are giving the statements of the four classical closing theorems.

Theorem A. [Poncelet [12]] For any quadric α and a circle δ on the plane the set of lines
touching α possesses the closing property on δ.
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As usual we call quadric in R
d a set of points x ∈ R

d such that (x, Ax) + (b, x) + c = 0,
where A is a self-adjoint operator, b ∈ R

d , c ∈ R, and ( · , · ) denotes the standard inner
product in R

d . We deal with real nonempty quadrics only. A quadric in R
2 is called plane.

If the quadric α in Theorem A is degenerate (a pair of lines, a single line, or a point),
then one replaces the tangents by parallel lines (in case of a line and of a pair of lines)
or, in case of a point, by lines passing through that point. The Poncelet theorem is usually
formulated for two quadrics α and δ. Nevertheless, it can always be assumed that δ is
a circle. Indeed, if the quadric δ is nondegenerate, then one can map it to a circle by
a suitable stereographic projection. Therefore, in this case the Poncelet theorem for two
quadrics follows from Theorem A. If δ is degenerate, then the Poncelet theorem is trivial,
and the reader will easily prove it.

To illustrate the Poncelet theorem, consider the case, when α and δ are both circles, and α

lies inside δ. Take a point D1 ∈ δ and draw a line tangent to α, which intersects the circle δ

for the second time at a point D2. There are two tangents to the circle α passing through
D2. One of them is D2 D1. Draw the second one D2 D3 (the point D3 lies on δ). Then
we draw the next tangent D3 D4 not coinciding with the previous one, etc. The Poncelet
theorem says that if this process cycles after n steps, i.e., Dn+1 = D1 (Fig. 1), then it

D1

D5

D4

D3

D2

Fig. 1 Poncelet theorem

will cycle for any choice of the initial point D1 with the same number of steps n. Thus,
if there is an n-gon inscribed in the circle δ and circumscribed around the circle α, then
there are infinitely many such n-gons. Moreover, any point of the circle δ is a vertex of one
of those inscribed-circumscribed n-gons. A beautiful proof of this version of Theorem A
using measure theory was derived by Jacobi and Bertrand (see, for instance, [14]). Proofs
of Theorem A involving the theory of projective quadrics see in [3, 11]. Other proofs based
on various ideas can be found in [1, 2, 8, 10]. None of them is elementary.

To formulate the next classical closing theorem in its most general form we use the notion
of index of tangency. The tangency of two circles is called interior if one of the circles
lies inside the other. Suppose α0, α1 are circles on the plane; then for an arbitrary circle β

touching both α0 and α1 the index of tangency is 0 if there is an even number of interior
tangencies among the two ones: β with α0 and β with α1. If this number is odd, then
the index is 1. This notion is naturally extended to the case, when some of the circles α j
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become straight lines (the index depends on the orientation of the line). For given i = 0, 1
we denote by Mi the family of circles touching α0 and α1 with index i . If either α0 or α1
becomes a point, then M0 = M1. The same notation will be used in the next sections for
families of spheres in R

3 touching two given spheres.

Given two circles α0 and α1 on the plane, α0 inside α1. In this case the family M1 consists
of circles inscribed in the annulus formed by the circles α0 and α1. The process of Steiner
produces a series of circles {vk}k∈N ⊂ M1 as follows: v1 ∈ M1 is arbitrary, for any
k ∈ N the circle vk+1 touches vk and is different from vk−1 if k ≥ 2. The process has
period n ≥ 3 if vn+1 = v1.

Theorem B. [Steiner] If the process of Steiner is periodic for some initial circle v1, then it
has the same period for any v1 ∈ M1.

Thus, if there is a closed chain of n touching circles inscribed in the annulus between α0
and α1 (Fig. 2), then there are infinitely many such chains, and any circle inscribed in the
annulus can be the first circle of a chain. This construction is sometimes called Steiner’s
necklace, or even Steiner’s telephone dialer. In contrast to other closing theorems Theo-
rem B has several elementary proofs. The most known one is by inversion: if one applies
a suitable inversion taking α0 and α1 to a pair of concentric circles, then the statement
becomes obvious. However, none of those elementary proofs can be extended to the other
Poncelet type theorems.

0

1

Fig. 2 Steiner theorem

The third one is the zigzag theorem. It also deals with two circles, but this time the circles
are not necessarily on one plane, they may have arbitrary positions in the space. Given a
number ρ > 0 and two circles s and δ in the space R

3. Assume this pair of circles satisfies
the following condition:
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(c) The orthogonal projection of any of these circles onto the two-dimensional plane
containing the other circle does not pass through its center.

So, if one takes either of these circles and erects a perpendicular to its plane at the center
of that circle, then it does not meet the other circle.

Take an arbitrary point D1 ∈ δ. If the sphere of radius ρ centered at D1 intersects s, then
we take any of two points of intersection and call it S1. Then we take a point D2 ∈ δ such
that D2S1 = ρ and D2 �= D1 (if it does not exist, then D2 = D1). Further, the point S2 ∈ s
is such that S2 D2 = ρ, S2 �= S1 (if such a point does not exist, then we set S2 = S1), and
so on. The zigzag process produces the sequences {Dk} and {Sk} for a given initial segment
D1S1 = ρ. Zigzag has period n if Dn+1 = D1.

Theorem C. [zigzag] If the zigzag has period n ≥ 3 for some initial point D1 ∈ δ and all
the intermediate points are distinct, then it has the same period for any point D1 ∈ δ, from
which one can make the first step.

The zigzag process can be interpreted as jumps of a flea from one circle to another with
the same length of the jump ρ (Fig. 3). If after 2n jumps the flea arrives at the starting
point D1, then it will happen for any starting point on the circle δ. In other words, if there
is a 2n-gon, whose even vertices lie on the circle δ, odd vertices lie on the circle s, and all
sides have the same length ρ, then there are infinitely many such 2n-gons. Moreover, any
point of δ can be a vertex of such a 2n-gon.

D1

D2

D3 S1

S2

S3 s

Fig. 3 Zigzag theorem

Theorem C originates in [5]. Its proofs based on various ideas, highly non-elementary, can
be found in [1, 4]. The equivalence of the zigzag theorem and the Poncelet theorem was
established in [9].

Now we turn to the fourth closing theorem. We are going to see that this theorem is, in a
sense, the strongest one: the three others easily follow from it. In the statement we again
use the families of circles M0 and M1 defined above.

Theorem D. [Emch [7]] There are circles α0, α1, and δ on the plane, each of them may
become a point. Then for any i ∈ {0, 1} the family Mi corresponding to the pair of
circles α0, α1 possesses the closing property on δ, provided δ /∈ Mi .

Fig. 4 illustrates Theorem D in case, when the circle δ lies between α0 and α1. If there is a
closed chain of n circles inscribed in the annulus formed by α0 and α1, such that each pair
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1

0

Fig. 4 Emch theorem

on neighboring circles meets on δ, then there are infinitely many such chains. Moreover,
any circle inscribed in the annulus can be the first circle of a chain.

A proof of Theorem D can be found in [1]. In [13] this theorem was derived from the
Poncelet theorem by elementary geometric tools.

3 General closing principle

We are going to establish a fundamental theorem that implies not only the classical The-
orems A–D, but also their multidimensional generalizations obtained in the next sections.
This theorem is formulated in the space R

d for series of Euclidean spheres. Let us start
with introducing some notation. We denote by S(z, r) = {x ∈ R

d , |x−z| = r} a Euclidean
sphere in R

d of radius r centered at z; by P(n, c) = {x ∈ R
d , (n, x) = c} we denote a

hyperplane with a direction vector n, |n| = 1, and c ∈ R. A sequence of spheres S(zk, rk),
k ∈ N, converges to the plane P(n, c) if rk → ∞, zk/|zk | → n and (|zk|2−r2

k )/2|zk | → c
as k → ∞. By spheres we also mean points (when r = 0) and planes, unless the opposite
is stated (for instance, when the radius is given). In particular, S(z, r) denotes a sphere or
a point (when r = 0), but not a plane.

Let us now define the closing property for families of spheres in R
d . Suppose a circle δ

and a family of spheres M are given in the space R
d . We call a point z ∈ R

d singular
for the family M if there are more than two spheres from M passing through z. The two
following conditions extend conditions (a) and (b) (Section 2) from circles to spheres:

(a′) Circle δ does not contain singular points for M.

(b′) There is no sphere in M containing δ.

Consider now the same process as in Section 2 for spheres. For an arbitrary point D1 on the
circle δ we draw a sphere v1 ∈ M through it (we suppose that such a sphere exists; if there
are two ones, then we take any of them), and denote by D2 the second point of intersection
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of v1 and δ (in case of tangency D2 = D1). Draw a sphere v2 ∈ M through D2 different
from v1 (if it does not exist, then we set v2 = v1), and denote by D3 the second point of
its intersection with δ, etc. We obtain a series of spheres {vk}∞k=1. The process has period
n if vn+1 = v1 or, which is the same, Dn+1 = D1.

Definition 2. A family of spheres M is said to possess the closing property on a circle δ

if it satisfies conditions (a′), (b′) and the following condition:

If for some initial point D1 the process has period n ≥ 3 and all the points D1, . . . , Dn are
distinct, then it has the same period for any point D1 ∈ δ that belongs to a sphere from M.

The main result of this section gives sufficient conditions for a family of spheres to possess
the closing property on any circle. Suppose we are given a set � ⊂ R

d , which is either a
plane quadric or a subset of a straight line. For arbitrary a ∈ R

d and b ∈ R consider the
set of spheres {S(z, r) ⊂ R

d} defined by the following relations:

r2 = |z − a|2 + b , z ∈ � . (1)

So, this family consists of all spheres S(z, r) such that z ∈ � and |z − a|2 + b ≥ 0, in
which case r = √|z − a|2 + b. If the set � is unbounded, then we add to this family one
or two limit planes: if � is a hyperbola or a pair of lines, then the two planes P(nk , ck),
k = 0, 1, are added, where nk are the direction vectors of the lines or of the asymptotes
of the hyperbola, ck = (nk, a); if � is a subset of a line, then one plane P(n, c) is added,
where n is the direction vector of the line, c = (n, a).

Theorem 1. Family (1) possesses the closing property on any circle δ ⊂ R
d that does not

contain singular points for family (1) and does not lie on its spheres.

Proof. First, we reduce the theorem to the planar case, i.e., to d = 2. Then we show that
all circles of family (1) touch a suitable quadric α, after which the theorem will follow
from Theorem A.

Thus, let us reduce the theorem to the case d = 2. We consider only spheres of family (1),
the same results for planes, if they exist, will follow from the limit passage. Without loss
of generality it may be assumed that the origin is located on the two-dimensional affine
plane K containing the circle δ. If some sphere S(z, r) of family (1) intercepts a circle
on K with center z1 and radius r1, then r2 − |z|2 = r2

1 − |z1|2. Whence z1, r1 satisfy (1),
where a and � are replaced by their orthogonal projections onto K and the parameter b
is also properly changed. Thus, the family of circles formed by intersections of spheres
from family (1) with the plane K can be defined by similar relations on K .

Let q be the center of the circle δ, R be its radius. Take an arbitrary circle γ of the family (1)
intersecting δ. Let l be the line containing the common chord of δ and γ (Fig. 5). Any
point x ∈ l has equal powers with respect to δ and γ , hence |x − q|2 − R2 = |x −
z|2 − r2. Expressing r2 from (1) we obtain after simplifications (x − a, z − q) = k,

where k = R2−|a|2−|q|2−b
2 + (a, q). This linear equation on x is nontrivial (z − q and k

cannot vanish simultaneously), otherwise the circle γ coincides with δ, which contradicts
the assumption. So, we obtain a family of lines L = {l(z), z ∈ �}, where l(z) = l =
{x ∈ R

2 | (x − a, z − q) = k}. If � is a subset of a straight line, then all the lines of L
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z
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lR

r

Fig. 5

concur, or they are all parallel. In this case the statement is trivial: for any point D1 ∈ δ the
process has period 2, whenever it can start. If � is a quadric, then all lines of the family L
touch the quadric α, which is obtained from the dual quadric (� − q)∗ by applying the
multiplication by the factor k and the translation by the vector a. Therefore, in this case
the theorem follows from Theorem A. �

In the next three sections we observe some crucial corollaries of Theorem 1. We are going
to see that Theorem 1 is a quite powerful tool to prove many Poncelet type results. First,
we establish a special closing theorem for spheres in the space R

3 that imply, just as simple
special cases, all four classical Theorems A–D. Another simple corollary of Theorem 1 is
that the zigzag theorem holds for any pair of circles in R

d , not necessarily in R
3. Then we

go further and derive a general closing theorem in R
d which is a generalization of Emch’s

theorem (Theorem D) for all dimensions d ≥ 2.

4 Closing theorem in R
3 and the four classical theorems

In the space R
3 given a sphere Q and spheres S0, S1 ⊂ R

3 that are not symmetric with
respect to Q (i.e. are not mapped to each other by the inversion with respect to Q). The
sphere Q, and one of the spheres S0, S1 may become points. Let Mi , i = 0, 1, be the
corresponding families of spheres tangent to S0 and S1 (see the definition in Section 2).
Choose i ∈ {0, 1} and consider the family M of spheres from Mi that are orthogonal
to Q. There are at most two singular points in R

3 for the family M, this will be shown in
Remark 1. Orthogonality, as usual, means that two tangent planes to the spheres drawn at
their common point are perpendicular to each other. Equivalently, two radii of the spheres
starting at their common point form a right angle. If Q is a plane, then a sphere is orthog-
onal to Q iff it is centered on Q; if Q is a point, then a sphere is orthogonal to Q iff it
passes through Q.

Theorem 2. The family M possesses the closing property on any circle δ ⊂ R
3 that does

not pass through singular points and does not lie on a sphere from M.
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The geometrical meaning of this theorem is less obvious than for Theorems A–D because
of that orthogonality condition. However, as we will see below, Theorem 2 implies all of
them. In some sense, Theorem 2 is a common root for all the classical closing theorems.

The proof of Theorem 2 is by merely showing that the family M satisfies the assump-
tions of Theorem 1. We use several well-known facts of elementary geometry. Any pair of
spheres S0, S1 of different radii has two homothety centers h0, h1. This means that there is
a homothety centered at h0 taking the sphere S0 to S1, and the same holds for the point h1.
For each i = 0, 1 the line joining the points of tangency of any sphere from Mi with S0
and with S1 passes through hi . Moreover, the point hi has the same power with respect to
all spheres of the family Mi . In the sequel we denote this power by pi .

Proof of Theorem 2. With possible inversion it may be assumed that Q, S0, and S1 are
spheres (not planes) and that S0, S1 have different radii. Thus, r0 �= r1, where Sk =
S(zk , rk), k = 0, 1. Choose some i ∈ {0, 1} take the corresponding subset M of the
family Mi and consider an arbitrary sphere S(z, r) ∈ M (Fig. 6). The power of the point

Q
S(z,r)

S1

S0

z2

z
h1

Fig. 6 Closing theorem in R
3 (Theorem 2)

hi with respect to this sphere is equal to pi , so |z − hi |2 − r2 = pi . Thus, the sphere
S(z, r) satisfies (1) with a = hi , b = −pi . Since this sphere is orthogonal to Q, we have
|z−z2|2 = r2+r2

2 , where z2 is the center of Q and r2 is its radius. Subtracting this equality
from the previous one, we obtain a linear equation in z, which defines some plane L ⊂ R

3.
On the other hand, the centers of all spheres of Mi form a quadric in R

3 with foci z0, z1.
Therefore the centers z of the spheres S(z, r) ∈ M lie on the intersection of that quadric
with the plane L, i.e., on a plane quadric �. It now remains to apply Theorem 1. �

Let us now derive Theorems A–D from Theorem 2.

Theorem 2 ⇒ Theorem A. S0, S1 are arbitrary spheres inscribed in a cone that has the
quadric α as a plane section; Q is the point at infinity.
In this case all spheres of M are planes, because they contain the point at infinity. They
intersect the plane of the quadric α by lines touching α. From this Theorem A follows.
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Theorem 2 ⇒ Theorem C. In this case Q is the plane of the circle s, the spheres Si are
concentric to s and have radii |r ± ρ|, where r is the radius of s.

Theorem 2 ⇒ Theorem D. We set Q to be the plane of the circles α0, α1, δ, the sphere Si

has its center on the plane Q and intersects it along the circle αi , i = 0, 1.
In this case all spheres of M are centered on the plane Q and intersect that plane by circles
tangent to both α0 and α1.

Theorem 2 ⇒ Theorem B. Theorem B is a special case of Theorem D (Section 7).

Thus, the Poncelet theorem corresponds to the case of Theorem 2, when Q is the point
at infinity; the zigzag theorem corresponds to the case, when S0, S1 are disjoint and both
orthogonal to Q; finally the Emch theorem corresponds to another special case, when the
circle δ lies on the sphere Q, and the spheres S0 and S1 are both orthogonal to Q.

Remark 1. Theorem 2 holds for general spheres Q, S0, S1 and a circle δ in the sense that
any three spheres and a circle in general position satisfy the assumptions of Theorem 2.
To see this we show that there are at most two singular points for the family M. With
possible inversion we may assume that the radii of the spheres S0, S1 are different. If z is
a singular point, then z /∈ Q and, moreover, the line joining z and z̃ (the inverse image of
z with respect to the sphere Q) passes through h, and (hi − z, hi − z̃) = pi . To show this
we make an inversion with center at the point z (the images will be denoted by prime).
Spheres of M containing z become planes passing through the center of the sphere Q′ (or
perpendicular to the plane Q′ in case z ∈ Q), tangent to the spheres S′

0, S′
1. There are at

most two such planes unless the center of Q′ coincides with the homothety center of the
spheres S′

0, S′
1. This case corresponds to the property of the point z described above. There

are at most two points z with this property.

5 Zigzag theorem for two circles in R
d

Another immediate corollary of Theorem 1 is the extension of the zigzag theorem to spaces
of all dimensions.

Corollary 1. Theorem C holds for any pair of circles in R
d satisfying condition (c).

Proof. Let s and δ be arbitrary circles in R
d and ρ > 0 be the length of the jump. The

family M of spheres of radius ρ centered on s can be defined by relations (1), where
� = s, a is the center of the circle s, r is its radius, and b = ρ2 − r2. �

6 Closing theorem for spheres in R
d

As we already mentioned in the introduction, the Emch theorem plays a special role among
the four classical closing theorems. In some sense, it is the strongest one among them,
because the Poncelet theorem for two circles, the Steiner theorem, and the zigzag theorem
in case of circles on one plane follow easily from Emch’s theorem. This will be shown
in Section 7. That is why it would be most interesting to have the Emch theorem not
only in the plane, but in the space R

d for any d ≥ 2. Instead of the family of circles M
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S1

S2

S3

S(z,r)

Fig. 7 Generalized Emch theorem (Theorem 3)

touching two given circles α0, α1 on the plane, as in Theorem D, we now consider a family
of spheres touching d given spheres in R

d (Fig. 7). It appears that, under some general
assumptions, this family possesses the closing property on any circle δ ⊂ R

d . This means
that if there is a closed chain of n spheres in R

d touching d given spheres such that each
pair on neighboring spheres intersect on the circle δ, then there are infinitely many such
chains. Moreover, for any point of δ there is a chain starting in it. This is a generalization
of Emch’s theorem to R

d . To formulate it one needs to overcome one difficult point. In
Theorem D we deal with two families of circles M0, M1 touching two given circles. For
d spheres in the space R

d there may be as many as 2d−1 such families of spheres. To
classify them it will be convenient to use the notion of oriented sphere.

An oriented sphere S(z, r) of radius r ∈ R centered at z is the set of points x ∈ R
d

such that |x − z| = |r |. So the radius of an oriented sphere may take any real value;
S(z, r) and S(z,−r) are considered as two different spheres, whenever r �= 0, although
they correspond to the same set of points in R

d . P(n, c) denotes the oriented plane that
consists of points x ∈ R

d such that (n, x) = c. The planes P(n, c) and P(−n,−c) are
also considered to be different, although they correspond to the same set of points. In
this section all spheres and planes are assumed to be oriented. A sphere S(z, r) touches a
sphere S(z0, r0) when |z − z0| = |r + r0|; it touches a plane P(n, c) when (z, n) + r = c.
A collection of spheres Si = S(zi , ri ), i = 1, . . . , d is said to be in the general position if
the affine hull of the points (zi , ri )

T ∈ R
d+1, i = 1, . . . , d , is of dimension d − 1. This

means that the points (zi , ri )
T are vertices of a (d − 1)-dimensional simplex. The general

position property is invariant with respect to translations and orthogonal transforms of R
d ,

but not with respect to inversions. We call two collections of spheres (including planes)
equivalent if one of them can be obtained from the other by finitely many isometries and
inversions. Now we are ready to formulate the main theorem.

Let us have a collection of d spheres Si = S(zi , ri ), i = 1, . . . , d . Some of them, but not
all simultaneously, may become points. Consider the family M of spheres tangent to all
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the spheres Si . Note that in case d ≥ 3 the family M may be empty for some collections.
For a set of d usual (non-oriented) spheres there are up to 2d−1 such families, depending
on the orientation.

Theorem 3. Let a collection of d spheres in R
d be equivalent to a collection in general

position and the family M of spheres touching them be nonempty. If a circle δ ⊂ R
d does

not contain singular points and does not lie on a sphere from M, then M possesses the
closing property on δ.

Let us see what Theorem 3 gives for small dimensions d .

d = 2. Any pair of distinct circles in the plane is in general position, therefore Theorem 3
becomes the Emch theorem.

d = 3. Theorem 3 holds for any triple of spheres in R
3, for which there is a sphere

touching them. If a triple S(zi , ri ), i = 1, 2, 3, is not in general position, then the points
(zi , ri )

T ∈ R
4 are collinear. Whence the centers zi are on the same line as well. Applying

the inversion with some center outside that line we get spheres in general position.

Thus, in case of small dimensions any collection of spheres are equivalent to one in general
position. For d ≥ 4 this may not be the case. Nevertheless, a “typical” set of d spheres and
one circle in R

d does satisfy the assumptions of Theorem 3. Let us first establish this, and
then we prove the theorem. We start with three auxiliary results. Observe that any sphere
S(z, r) ∈ M satisfies the following system of equations:

r2 = |z|2 − 2(zi , z) − 2rir + |zi |2 − r2
i , i = 1, . . . , d; (2)

and any plane P(n, c) ∈ M satisfies the system

(zi , n) + ri = c, i = 1, . . . , d. (3)

Lemma 1. For any collection of spheres in general position the family M contains at
most two planes.

Proof. Subtracting the first equation of system (3) from the others we obtain the linear
system (zi − z1, n) = ri − r1, i = 2, . . . , d of rank d − 1. Its solutions n form a straight
line in R

d , which contains at most two points such that |n| = 1. �

Planes of the family M, if they exist at all, are limits for the spheres of that family. Now
we clarify when all spheres forming an affine plane (in the space of spheres) can touch one
sphere.

Lemma 2. Suppose an affine plane L ⊂ R
d+1, dim L ≥ 1 is such that there is a sphere

(or a point) S0 ⊂ R
d tangent to every sphere of the family L = {S(z, r) | (z, r)T ∈ L}.

Then L is a line and L is a pencil of spheres tangent at one point. Moreover, S0 ∈ L.

Proof. If dim L = 1, then the center z of any sphere of L lies on a fixed straight line
b ⊂ R

d and its radius r is a linear function of z. If all the spheres from L touch S0, then
the center of S0 lies on b as well, otherwise r is not linear in z. Therefore, L is a pencil
of tangent spheres. In particular, S0 also belongs to L. In case dim L ≥ 2 all lines on L
concur at one point corresponding to the sphere S0, which is impossible. �
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The last auxiliary result restricts the location of singular points of the family M.

Lemma 3. For a collection of d spheres in general position all singular points of the
family M lie on some affine plane E of dimension d − 2. If M contains two planes, then
their intersection coincides with E.

Proof. It suffices to show that if a point z0 is singular, then the point (z0, 0)T belongs
to a plane E0 ⊂ R

d+1, which is an affine hull of the points (zi , ri )
T , i = 1, . . . , d .

Note that dim E0 = d − 1. For a sphere S(z, r) that passes through the point z0 we have
r2 = |z|2 − 2(z0, z) + |z0|2. Subtracting this equation from each equation of (2) we obtain
the system

(zi − z0, z) + rir = 1

2
(|zi |2 − r2

i − |z0|2), i = 1, . . . , d. (4)

If (z0, 0)T /∈ E0, then the matrix of this system has full rank d . Therefore its solutions,
i.e., points (z, r)T , form a straight line l ∈ R

d+1. Substituting the solutions in system (2)
we get a quadratic equation. If all its coefficients vanish, then all the spheres correspond-
ing to the solutions (z, r)T touch the sphere S1. Hence by Lemma 2 they constitute a
pencil of tangent spheres. Then all the spheres Si belong to this pencil, therefore all the
points (zi , ri )

T lie on a line, which contradicts to their general position. Thus, the obtained
quadratic equation is nontrivial and has at most two solutions. So, there are at most two
spheres from M passing through z0. Whence, if a point z0 does not belong to a plane
from M, then it is nonsingular. If it belongs to a plane from M, then by (3) it satisfies
the equations (zi − z0, n) − ri = 0, i = 1, . . . , d . This system has full rank d and so it
has at most one solution n. Comparing this system with (4) we conclude that the line l
is parallel to the vector (n, 1)T ∈ R

d+1. Substituting the solutions (z, r) ∈ l in the first
equation of (2) and taking into account that |n| = 1 we get a linear equation (quadratic
terms disappear), which has at most one solution. Thus, there is a unique plane and at most
one sphere from M passing through z0. �

Thus, if a circle δ does not intersect the (d − 2)-dimensional plane E , then it does not
contain singular points. For an arbitrary point z ∈ δ there are at most two spheres from
M passing through z. If the circle δ is not contained in any of these two spheres, then it
does not lie on any sphere of M. Thus, we see that in general position a set of d spheres
and one circle in R

d indeed satisfy the assumptions of Theorem 3. Now we can prove the
theorem.

Proof of Theorem 3. It suffices to consider the case of d spheres in general position. We
show that the family M can be defined by relations (1) and then apply Theorem 1. The
proof will be realized for spheres of M, for planes (if they exist) it will follow by the
limit passage. Assume first that among the spheres Si there are two ones of different radii
(regarding the sign). Subtracting the first equation of system (2) from the others we obtain
d − 1 linear equations 2(z1 − zi , z) + 2(r1 − ri )r = αi , i = 2, . . . , d , where αi are
some constants. For at least one of them the coefficient r1 −ri does not vanish. Expressing
r = r(z) from that equation and substituting it in the other equations, we get a system
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of d − 2 linear equations (of rank d − 2) for the variable z. Its solutions z form a two-
dimensional affine plane L0 ⊂ R

d . Since the function r(z) is linear, the points (z, r(z))T

form a two-dimensional affine plane L ⊂ R
d+1. Substituting r(z) in the first equation of

system (2) we obtain an equation for z, which is either quadratic or linear. If all points
of L0 satisfy it, then all the spheres associated to the points (z, r)T ∈ L touch the sphere
S1, which is impossible (Lemma 2). Therefore points z ∈ L0 satisfying that equation form
a plain quadric (or a line) � ⊂ L0. Now substitute r(z) in the right hand side of the first
equation (2) and obtain r2 = |z|2 − (a, z) + c, where a ∈ R

d and c ∈ R. Extracting the
perfect square we arrive at (1). Finally, if the radii ri are all the same, then the centers of
the spheres of M lie on a straight line �, and one can easily write equation (1). �

7 Elementary proof of Theorem D

Now we come back to the planar Emch theorem (Theorem D). Among the four classical
closing theorems it is the strongest one: the three others are actually its special cases.
Indeed, if the circle α1 degenerates into a point, then an inversion with the center at this
point yields Theorem A for two circles. If α0 lies within α1, and the circle δ is orthogonal to
all circles of the family M1, then we obtain Theorem B. We use the fact that the center h1
of homothety of the circles α0 and α1 has the same power p1 with respect to all circles
of M1 (see Section 3). Therefore the circle δ of radius

√
p1 centered at h1 is orthogonal to

all circles of M1 and contains all their points of tangency. Hence, Theorem B follows from
Theorem D. Finally, if the circles α0 and α1 are concentric, then we arrive at Theorem C
for the case when the circles δ and s are on one plane. Indeed, if we take as α0, α1 the
circles of radii |r ± ρ| concentric to s (r is the radius of s), then we obtain Theorem C.

Thus, for concentric circles α0, α1 Theorem D becomes the “planar” version of the zigzag
theorem; in case when α0 is the point at infinity, we obtain the Poncelet theorem for two
circles; finally, if α0 is inside α1, and δ is orthogonal to all circles of the family M1, then
we get the Steiner theorem.

The question arises if it is possible to give a proof of Theorem D that will be elemen-
tary and autonomous (not relying on the Poncelet theorem, in contrast to the proofs of
Theorems 2 and 3). In this section we give such a proof using only tools of elementary
geometry, the most complicated of which are inversions and pencils of circles. To avoid
technical difficulties we restrict ourselves to the following case of mutual position of cir-
cles in Theorem D:

(d) The circle δ is inside α1, the circle α0 is inside δ, and we consider the family M1 of
circles touching α1 from inside and α0 from outside.

The idea of the proof is the following: let a chain of circles inscribed in the annulus
bounded by α0 and α1 intersect the circle δ in successive points D1, D2, . . . and an-
other chain of circles inscribed in the annulus intersect δ in points D′

1, D′
2, . . . For any

i = 1, 2, . . . draw a new circle si tangent to α0 through the points Di and D′
i . It appears

that all the new circles si , i = 1, 2, . . ., touch some circle c (Fig. 8).

Moreover, c, δ and α1 belong to one pencil of circles. This implies that if the first chain
cycles (Dn+1 = D1), then the second also does (D′

n+1 = D′
1). The idea is quite clear, but
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to realize it we need to establish several auxiliary results. All of them are elementary, but
quite technical. Some of these results, such as Theorem 4 and Proposition 1 are, probably,
of some independent interest.

We begin with a simple auxiliary fact. In the sequel we assume that an arc AB of a circle

has the positive direction from A to B ,
�

AB denotes the angle defined by that arc.

N1

P

O1 N2

M2

O2
M1

A

Fig. 9

Lemma 4. Two circles of radii r1, r2 centered at O1, O2 intersect at points A and B.
Suppose P is the fourth vertex of the parallelogram O2 AO1 P; then for any circle centered
at P intersecting the first circle at some points M1, N1, and the second one at points M2,
N2 (Fig. 9) the following hold:

a) The lines M1 M2 and N1 N2 pass through A.

b)
M1 N1

M2 N2
= AN1

AM2
= AM1

AN2
= B M1

B M2
= B N1

B N2
= r1

r2
.

Proof. a) The triangles P O1 M1 and M2 O2 P are equal by three equal sides, hence
∠M1 O1 P = ∠M2 O2 P . Furthermore, ∠P O1 B = ∠P O2 B, since O2 O1 P B is an equilat-
eral trapezium. Subtracting the second equality from the first one, we obtain ∠M1 O1 B =
∠M2 O2 B , therefore

�

B M1=
�

B M2. Consequently, ∠M1 AB = ∠M2 AB, and thus the line
M1 M2 passes through A. The proof for N1 N2 is the same.

b) It follows from a) that the chords M1 N1 and M2 N2 define equal angles on the two
circles: ∠M1 AN1 = ∠M2 AN2. Whence M1 N1

M2 N2
= r1

r2
. Similarly, B M1

B M2
= B N1

B N2
= r1

r2
.

Finally, since the quadrangle M1 M2 N1 N2 is inscribed in a circle, it follows that the
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triangles M1 AN1 and N2 AM2 are similar with the factor M1 N1
M2 N2

= r1
r2

. Therefore
AN1
AM2

= AM1
AN2

= r1
r2

. �

Before formulating the crucial auxiliary fact, Theorem 4, let us recall that a pencil of
circles is a set of circles on the plane orthogonal to two different circles (all circles may
degenerate into lines and points, unless the opposite is stated). Circular pencils are straight
lines in the three-dimensional space of circles. Any pair of circles b, c ⊂ R

2 is contained
in a unique pencil that will be denoted by P{b, c}. For every t ∈ R ∪ {∞} the set of points
on the plane, for which the ratio of powers with respect to given circles b and c equals to t
is either empty or a circle of the pencil P{b, c}.
Now we are going to establish the main theorem. Take two circles with a common center
P , we call them the bigger circle and the smaller one. Consider the families of circles M j ,
j = 0, 1, touching them. Take an arbitrary pair β0, β1 ∈ M0 and a pair γ0, γ1 ∈ M1.
The points of intersection of βi and γk will be denoted by A0

ik and A1
ik (the first point is

farther from the center P than the second one). Finally, draw one more circle centered at
P . Let it meet each of the circles βi and γk at two points bs

i , s = 0, 1 (respectively cs
k).

If a point goes around the circle βi counterclockwise from its point of tangency with the
bigger circle, then it meets the point b0

i first and b1
i second. The same with the points cs

k
(Fig. 10). In the notation of Theorem 4 all superscripts are taken modulo 2, for example,
A2

10 = A0
10, c3

1 = c1
1.

0

P

1

b1
0

0c0

0

b0
0

b1
1

c1
1A0

00

A0
01

A0
11

c0
1

c0
0

A0
10

b0
1

1

Fig. 10

Theorem 4. Given two circles with a common center P and arbitrary circles βi ∈ M0,
γk ∈ M1, i, k = 0, 1. Suppose As

ik are the corresponding 8 points of their intersection;
then
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a) The 4 points Ai+k
ik , i, k ∈ {0, 1}, lie on one circle (denote it by δ0). The same holds

for the 4 points Ai+k+1
ik , i, k ∈ {0, 1} (a circle δ1).

b) Let an arbitrary circle centered at P meet βi , γk at points bs
i , cs

k, respectively. Then
for every i, k ∈ {0, 1} the lines b0

i c0
k and b1

i c1
k pass through the point A0

ik .

c) Choose arbitrary q, j ∈ {0, 1} and draw a circle touching the circles βi at the points
bi+q

i , i = 0, 1, and a circle touching the circles γk at the points ck+q+ j+1
k , k = 0, 1.

Then these two circles belong to one pencil with δ j .

Thus, if four circles βi , γk , i, k ∈ {0, 1}, touch two concentric circles, then the eight points
of their intersection As

ik are naturally split into two quadruples, each of them lies on one
circle. Drawing a third concentric circle we get the 8 additional points of intersection bs

i ,
cs

k that form 8 triples of collinear points (Fig. 10). Finally, if we consider two pairs of
circles touching βi , γk at the points of their intersection with the third circle, then we
obtain 4 triples of circles, each of them is in one pencil. So this configuration of seven
circles produces two circles, 8 lines and 4 pencils.

Proof of Theorem 4. Let R and r be radii of the circles β0 and γ0, respectively, and O1,
O2 be their centers. Then O2 A0

00O1 P is a parallelogram with sides of lengths r and R. By
Lemma 4 the lines b0

0c0
0 and b1

0c1
0 concur at A0

00. This proves item b) for i = k = 0, the
proof for the other indices is the same.

Now draw a circle b touching β0 and β1 at the points b0
0 and b1

1, respectively, and a circle c
touching γ0 and γ1 at the points c1

0 and c0
1. We assume that both b and c do not degenerate

into lines. Denote by x the radius of the circle b taken with the sign: it is positive if this
circle touches β0 from outside, and negative otherwise. Similarly y is the radius of c with
the sign. Denote also by B the second point of intersection of the line b0

0 A0
00 with the

circle b, and by C the second point of intersection of the line c1
0 A0

00 with the circle c. The
similarity of circles implies that b0

0 B = x
R b0

0 A0
00. Therefore the power of the point A0

00
with respect to the circle b is A0

00b0
0 · A0

00 B = (
1 + x

R )
(
A0

00b0
0)

2. Similarly, the power of
the point A0

00 with respect to c is
(
1 + y

r )
(
A0

00c1
0)

2. Lemma 4 yields A0
00b0

0/A0
00c1

0 = R/r .
Therefore, the ratio of the powers of the point A0

00 with respect to the circles b and c is

equal to (R+x)R
(r+y)r . In the same way we obtain that for each of the points A0

11, A1
10, A1

01 the

ratio of powers with respect to b and c also equals (R+x)R
(r+y)r . Whence, these 4 points are on

one circle (δ0) that belongs to the pencil P{b, c}. This proves items a) and c) for j, q = 0.
The proof for other j , q is the same. �

Corollary 2. Under the assumptions of Theorem 4 for any j = 0, 1 the following holds:
For an arbitrary circle b touching the circles β0 and β1 in the same way (both from inside
or both from outside) there exists a circle c ∈ P{δ j , b} touching γ0 and γ1 in the same
way.

Remark 2. Through any point A of the circle γ0 (different from points of its tangency
with the bigger circle and with the smaller one) one can draw two circles of the family M0.
Precisely for one of them A is the closest to P point of intersection with γ0.
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Theorem 4 b) implies, in particular, that for any i, k ∈ {0, 1} the line joining the points of
tangency of βi , γk with the bigger circle passes through the point A0

ik . The same is true
for the smaller circle. We need the converse, whose proof will be a simple exercise for the
reader.

Lemma 5. Suppose an arbitrary straight line passing through the point of tangency of
given circles α and β meet these circles at points A and B, respectively. The circle s
passes through B and touches α at the point A. Then all such circles s touch a fixed circle
different from α. This circle touches β and is concentric to α.

Now we are formulating the assertion, from which Theorem D follows immediately. Con-
sider arbitrary circles α0, α1, and δ satisfying condition (d). Take two series of circles
{vk}, {v′

k} ⊂ M1 and the corresponding points {Dk} and {D′
k} on the circle δ. We assume

that these sequences both go around δ in positive direction and that D′
1 belongs to the arc

D1 D2 (Fig. 8). Denote by sk the circle passing through the points Dk , D′
k and tangent to α0

from outside.

Proposition 1. All the circles sk , k ∈ N, touch a fixed circle of the pencil P{δ, α1}.

Proof. It consists of the consecutive application of Theorem 4 to the pairs of circles vk ,
v′

k and sk , sk+1 for all k ≥ 1 (Fig. 8). A suitable inversion maps the pairs v1, v′
1 and s1,

s2 to the pairs β0, β1 and γ0, γ1 from Theorem 4. To see this we make an inversion with
center at the second point of intersection of the circles M B K and MC L (the first point of
their intersection is M), where K , M , L are the points of tangency of the circle α0 with
s1, s2, v1, respectively, and B and C are the second points of intersection of the circle v1
with the circles s1 and s2, respectively. By Lemma 5 the images of the circles s1, s2, v1
touch two concentric circles, one of them is the image of α0. In order to be defined we
assume that the image of α0 is the smaller concentric circle and that the images of s1, s2
are situated between these concentric circles. Thus, s1, s2, v1 are mapped to the circles
γ0, γ1, β0, and the points D1 and D2 are mapped to A1

00 and A0
01, respectively. Let X1,

X2 be images of the points D′
1, D′

2. Draw a circle β1 through X2 that touches both these
concentric circles from within so that X2 is the closest (to the center) point of intersection
of γ1 and β1 (Remark 2). Thus, X2 = A1

11. By Theorem 4 a) the points A1
00, A0

01, A1
11,

A0
10 lie on a circle. By the assumptions A1

00, A0
01, A1

11, X1 are on a circle as well. Whence
A0

10 = X1, and β1 is the image of v′
1. Thus, an inversion takes circles v1, v′

1, s1, s2 to the
circles β0, β1, γ0, γ1, respectively. According to Corollary 2 the pencil P{δ, α1} contains
some circle c touching the circles s1, s2 in the same way. It is located between the circles δ

and α1. Indeed, if we fix the points D1, D2 and move the point D′
1 along the arc D1 D2,

then at the extreme positions we have: c = δ in case D′
1 = D1, and c = α1 in case

D′
1 = D2. The circle c changes continuously in the same pencil P{δ, α1} when D′

1 moves.
Hence if for some D′

1 the circle c is not between δ and α1, then for some interior point D′
1

of the arc D1 D2 one has either c = δ or c = α1. Neither of these cases is possible, because
for any interior point of the arc D1 D2 the circle s1 touches neither δ nor α1.

Taking the next pairs of circles v2, v′
2 and s2, s3, we obtain a circle that belongs to the same

pencil P{δ, α1}, lies between δ and α1, and touches both s2 and s3. This circle coincides
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with c because the pencil P{δ, α1} has at most one circle between δ and α1 that touches s2.
Hence c touches s3. Thus we consecutively prove that c is tangent to all the circles sk . �

Proof of Theorem D in case (d). Let v1, . . . , vn be a periodic series of circles (vn+1 =
v1), D1, . . . , Dn be the corresponding points on δ. Take an arbitrary series v′

1, v
′
2, . . . and

the corresponding sequence of points D′
1, D′

2, . . . With possible renumbering it may be
assumed that these sequences both go around the circle δ in positive direction and that
the point D′

1 is located on the arc D1 D2 (Fig. 11). Consider the circles sk , k ≥ 1, from
Proposition 1 and conclude that they are all tangent to a circle c ∈ P{δ, α1}. The arc D1 D2
has only one point D′

1, for which the circle passing through the points D′
1 and Dn+1 = D1

and touching α0 from outside is tangent to c. Therefore D′
n+1 = D′

1 and sn+1 = s1, which
completes the proof. �

D3

Dn

D3Dn

D1

D2D2

D1

2

1

2

1

n

s2
s1

sn

c

1

0

n

Fig. 11 Proof of Theorem D

8 Generalization of Theorem D

The method developed in the previous section makes it possible to go a bit further and to
obtain a generalization of the Emch theorem for several pencils of circles analogous to the
great Poncelet theorem [3, Theorem 16.6.7]. We formulate it only for one case of mutual
position of circles. Let us have a circle δ and two sequences of circles {αk

0} and {αk
1}. Each

sequence {αk
i } is contained in a pencil Ai , i = 0, 1, that also contains the circle δ. We

assume that the circles {αk
0} are all inside δ and that δ is inside all the circles {αk

1}. By
Mk

1 we denote the families of circles tangent to αk
1 and αk

0 with index 1 (touching αk
0 from

without and αk
1 from within).

We choose an arbitrary point D1 ∈ δ and draw a circle v1 ∈ M1
1 through it. Then take the

second point D2 of intersection of v1 with the circle δ, draw a circle v2 ∈ M2
1 through it,

etc. The circles vk are chosen in each iteration so that the sequence {Dk} goes along δ in
positive direction.
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Theorem 5. If the process starting at some point D1 has period n ≥ 3 and all the points
D1, . . . , Dn are different, then it has the same period for any initial point.

The proof is literally the same as the proof of Theorem D and is based on the following
analog of Proposition 1. Given two series of circles {vk}, {v′

k}, where vk , v
′
k ∈ Mk

1, k ∈ N,
and the corresponding sequences of points {Dk}, {D′

k} on δ. Assume that D′
1 is located on

the arc D1 D2. Choose an arbitrary circle α0 ∈ A0 lying inside δ and denote by sk the circle
passing through the points Dk , D′

k and touching α0 from outside. Then all the circles sk ,
k ∈ N, are tangent to one circle of the pencil A0. The proof of this fact is realized in the
same way as for Proposition 1 and we leave it to the reader.
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