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Recall that the Möbius µ-function from elementary number theory is defined so that
µ(n) = (−1)k if n is a product of k distinct primes, and µ(n) = 0 if n is divisible by
the square of a prime. (So µ(1) = (−1)0 = 1.) For any arithmetic function f (i.e., any
f : N → C), its Dirichlet transform f̂ is defined by

f̂ (n) :=
∑

d |n
f (d),

and its Möbius transform f̌ by

f̌ (n) :=
∑

d |n
µ(n/d) f (d).

The well-known Möbius inversion formula ([2, Theorems 266, 267]) says precisely that
the Möbius and Dirichlet transforms are inverses of each other: for any f , we have

f = ˇ̂f = ˆ̌f.

.

Es gibt eine Vielzahl von Beweisen zur Unendlichkeit der Menge P der Primzah-
len. Der vermutlich den meisten Lesern bekannte Beweis geht von der Annahme
P = {p1, . . . , pm} aus und führt diese Annahme durch Betrachtung der natürlichen
Zahl n = p1 · · · pm + 1 zum Widerspruch, da diese Zahl einen Primteiler p mit
p /∈ P besitzt; dieser Beweis wird Euklid zugeschrieben. Ein anderer, auf Euler
zurückgehender Beweis, basiert auf der Eulerschen Produktentwicklung der Riemann-
schen Zetafunktion ζ(s) und der Tatsache, dass ζ(s) an der Stelle s = 1 einen Pol
erster Ordnung hat. In der vorliegenden Arbeit finden wir einen weiteren Beweis zur
Unendlichkeit von P, der elementare Eigenschaften arithmetischer Funktionen f , g,
welche die Beziehung f (n) = ∑

d |n g(d) (n ∈ N) erfüllen, verwendet.
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Our proof of the infinitude of primes is based on the following lemma. By the support of
f , we mean the set of natural numbers n for which f (n) �= 0.

Lemma (Uncertainty principle for the Möbius transform). If f is an arithmetic func-
tion which does not vanish identically, then the support of f and the support of f̌ cannot
both be finite.

Proof. Suppose for the sake of contradiction that both f and f̌ are of finite support. Let

F(z) =
∞∑

n=1

f (n)zn .

Then F is entire (in fact, a polynomial function). On the other hand, for |z| < 1, we have

F(z) =
∞∑

n=1

(∑

d |n
f̌ (d)

)
zn

=
∞∑

d=1

f̌ (d)
(
zd + z2d + z3d + . . .

) =
∞∑

d=1

f̌ (d)
zd

1 − zd
. (1)

Here the interchange of summation is justified by observing that

∞∑

n=1

∑

d |n
| f̌ (d)||z|n ≤ A

∞∑

n=1

n|z|n = A
|z|

(1 − |z|)2
< ∞,

where A := maxd=1,2,3,... | f̌ (d)|.
Since f is not identically zero, neither is f̌ (by Möbius inversion). Let D be the largest
natural number for which f̌ (D) �= 0. The expression on the right-hand side of (1) repre-
sents a rational function with a pole at z = e2π i/D . This contradicts that F is entire (and
so bounded in the open unit disc). �

Theorem. There are infinitely many primes.

Proof. Suppose that there are only finitely many primes. Then there are only finitely many
products of distinct primes; i.e., µ is of finite support. But µ = f̌ , where f is the function
satisfying f (1) = 1 and f (n) = 0 for n > 1. For this f , both f and f̌ are of finite support,
contradicting the lemma. �

Remarks.

1) We have borrowed the term “uncertainty principle” from harmonic analysis. One of
the simplest manifestations of this principle is the theorem that a nonzero function
and its Fourier transform cannot both be compactly supported. This has a certain
surface similarity to our lemma. The analogy can be more deeply appreciated if
one brings into play the fact, first discerned by Ramanujan [3], that many arithmetic
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functions admit a type of Fourier expansion. For example, if σ(n) := ∑
d |n d denotes

the sum-of-divisors function, then

σ(n)

n
= π2

6

(
1 + 1

22
c2(n) + 1

32
c3(n) + . . .

)
,

where
cq(n) :=

∑

1≤a≤q
gcd(a,q)=1

e2π i an
q .

In general, the (natural) coefficients in the Ramanujan-Fourier expansion of f are
intimately connected with the values of f̌ . For suitably “nice” f , the support of f̌ is
finite precisely when the sequence of Ramanujan-Fourier coefficients of f is finitely
supported. (Cf. paragraphs 27 and following in [5].)

2) The strategy for our proofs goes back to Sylvester [4], who gave an argument in the
same spirit for the infinitude of primes p ≡ −1 (mod m) when m = 4 or m = 6.
There is also some resonance with Mirsky and Newman’s demonstration that there
is no exact covering system with distinct moduli greater than 1 (see [1]).
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