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1 Introduction

One of the famous old problems from antiquity is to trisect a given angle by using only a
compass and a ruler. In other words: By using only a tool to draw a straight line segment
through any two points and a tool to draw circles and arcs and duplicating lengths, one
wants to construct in a finite number of steps two half-lines that comprise one third of
an angle that itself is already given in terms of two half lines comprising it. The proof
that this venture is indeed impossible in general is a prime example of how axiomatic
mathematics works.

We start with algebraization of this problem. Let a subset M ⊆ A2(R) of the affine plane
and two different points 0, 1 ∈ M be given. The fact that we have 0 and 1 is equivalent
to the existence of a coordinate system including the unity length by setting (0, 0) = 0,

*This paper was initiated by a TV report “Origami löst unlösbare Probleme” in the science magazine Einstein
of the Swiss national television SF1 broadcasted on April 9, 2009, in which the author got involved after a request
of the producer.

.

Bekanntlich ist die Dreiteilung eines Winkels mit Zirkel und Lineal im Allgemeinen
nicht möglich. Nicht so bekannt ist hingegen, dass die Winkeldreiteilung mit anderen
Werkzeugen sehr wohl immer durchgeführt werden kann. Solche Methoden verwen-
den zum Beispiel markierte Lineale oder Origami-Faltungen. In der vorliegenden Ar-
beit wird diese letzte, hauptsächlich den Experten in der Theorie der geometrischen
Konstruktionen und Origami-Mathematik bekannte Konstruktion vorgestellt und zwei
Korrektheitsbeweise geführt. Es wird weiter diskutiert, welche Art von Problemen mit
Origami noch gelöst werden können, man denke beispielsweise an das delische Pro-
blem der Würfelverdoppelung, und wo die Grenzen dieser Methode liegen.
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(1, 0) = 1. A line in the affine plane is given by two points. A circle is given by the mid-
point and two other points the distance between them being the radius of the circle. In the
coordinate system the points on a line satisfy a linear equation and the points on a circle
can be described as the solution set of a quadratic equation. Let M be the set of all points
that can be constructed in a finite number of steps starting with points from M by the
following axioms:

(1) For any two lines each given by two points fromM, we can construct the intersection
point.

(2) Given a circle and a line both defined by points from M, then we can construct all
intersection points of the circle with the line.

(3) Given two non-identical circles by points from M, then we can construct all the
intersection points of the two circles.

In fact it is easy to see that (3) follows from (1) and (2) and that, by the Mohr-Mascheroni
theorem (cf. [23, 16]), all constructions can be formulated by using the compass alone. An
element z ∈ R is called constructable if the point (z, 0) is in M. Let K(M) denote the set
of all constructable elements and Q(M) the field generated over Q by the coordinates of
the points in M. It is well-known that the following statements are equivalent

(i) z ∈ K(M).

(ii) There is a sequence of quadratic field extensions K0 := Q(M) ⊂ K1 ⊂ K2 ⊂ . . . ⊂
Kn ⊂ R with z ∈ Kn .

(iii) z is contained in a Galois-extension K of Q(M) with [K : Q(M)] being a power
of 2.

The equivalence of (i) and (ii) is elementary; the equivalence to (iii) however involves
quite some algebra, especially Galois theory and the fact that every 2-group is solvable.

By using the Chebyshev identity cos(3ϕ) = 4 cos3(ϕ) − 3 cos(ϕ), we conclude from the
equivalences above that the angle θ = 3ϕ can be trisected by compass and ruler in a finite
number of steps if and only if the polynomial 4X3 − 3X − cos(θ) is reducible over the
field Q(cos(θ)). Especially, we get that π

3 cannot be trisected by compass and ruler since

X3 − 3X − 1 and so also 4X3 − 3X − 1
2 is irreducible over Q. Observe that special angles

can certainly be trisected, e.g. just look at the trivial example θ = 0.

In summary the bottom line is that angle trisection involves the solution of an irreducible
polynomial of degree three whereas constructable numbers are only roots of polynomials
of degree a power of two.

In the next section we show how angle trisection can be solved by Origami. This is in
fact a folklore result in the community of mathematical paper folding and Origami math-
ematics which has already been described in numerous papers. Nonetheless, we present
the construction and prove its correctness again, we discuss the background from mathe-
matical paper folding, we give further examples of classical problems that can be solved
by Origami, and finally we also discuss some further methods of angle trisection using
other tools. For a general account on geometric constructions we refer to [23] and two nice
books on Origami are [21, 14].
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2 Angle trisection with Origami

Somewhat surprisingly and in contrast to constructions by compass and ruler angle trisec-
tion can be done by Origami (see e.g. [5, 8]). To start with we describe the rules that are
allowed to fold a given sheet of paper, namely: All lines are defined by either the edge of
the paper or a crease on the paper; all points are defined by the intersection of two lines; all
folds must be uniquely defined by aligning combination of points and lines and a crease is
formed by making a single fold, flattening the result and (optionally) unfolding. The last
rule is somewhat restrictive, because it excludes multiple folds that are frequently used in
more complicated Origami figures.

Now we give the construction of the angle trisection that was discovered by H. Abe (cf.
[7]) and that was mentioned again at several places since then. We start with a square (or
rectangular) paper and denote the corner points (starting with the top left and enumerating
the others anti-clockwise) by A, B , C , D, respectively. Moreover, we assume that there is
given a crease starting in B that meets the line segment AD in the point P (see Fig. 1).
Now we perform the following steps in order to trisect the angle θ = �(C B P):

Angle trisection with Origami

i) Make a crease by folding and unfolding edge BC parallel to AD; the point on AB
is denoted by E .

ii) Fold edge BC up to the crease from step i) and unfold. The new point G is the
mid-point of the segment B E .

iii) Make a fold such that the point E lies on the crease B P and simultaneously B lies
on the crease obtained in step ii).
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iv) Crease along the existing crease through point G, creasing through both layers.

v) Unfold.

vi) Extend the crease from step iv) to the point B and fold the edge BC to lie on this
crease and unfold.

vii) The angle θ is trisected by �(C B B1).

Of course we still have to prove that this construction really works and we shall give two
proofs of the following statement.

Theorem 1. The Origami construction described above trisects the given angle θ .

Geometric proof of the correctness. Let ϕ = �(C B B1). By construction the trapezoid
B B1E1 E is isosceles. Thus the triangle B B1M is also isosceles. It follows that ϕ =
�(M B1 B) = �(B1 B M) where we have also used that the line starting at G is parallel to
the line BC . Now we use the symmetry of the triangle E B B1 to see that ϕ = �(E B1G).
Finally, again by symmetry, the triangle B B1N is also isosceles and therefore we get
ϕ = �(M B N). This shows that θ = �(C B P) = 3ϕ or ϕ = θ

3 . �

Alternatively we can introduce a coordinate system and then derive the same result by
using polynomial equations that come from Abe’s construction. We also give this proof.

Arithmetic proof of the correctness. Let B be the origin of the coordinate system and let
BC lie on the x- and B A on the y-axis. Denote the coordinates of the yet unknown points
E1, B1 by E1 = (α, β), B1 = (γ, δ). Then we have E = (0, 2δ), B = (0, 0). We can still
fix the unity of the coordinate system and we choose it such that γ 2 + δ2 = 1. This can be
assumed without loss of generality. By construction it follows that α2 + β2 = 1 and thus
B1 = (cos(θ), sin(θ)) where, as before, we have θ = �(C B P). We will use the following
two conditions that are satisfied by construction: Firstly the line segment B E has the same
length as B1 E1, which gives the equation 4δ2 = (α − γ )2 + (β − δ)2, and secondly E E1
is parallel to B B1, which gives

α

β − 2δ
= γ

δ
.

Thus we have the following four relations:

f1 = γ 2 + δ2 − 1 = 0,

f2 = 3δ2 + 2βδ − α2 + 2αγ − γ 2 − β2 = 0,

f3 = αδ + 2γ δ − βγ = 0,

f4 = α2 + β2 − 1 = 0.

Our goal is to deduce an equation involving γ and α that is independent of β, δ. We get
3 f1 − f2 = 0 = 4γ 2 − 2αγ − 2βδ +α2 +β2 − 3. By multiplying with α + 2γ and adding
2β f3 we get 8γ 3−6γ +α3−3α+αβ2 = 0. Now we subtract α f4 to get 8γ 3−6γ −2α = 0.
Dividing by 2 gives 4γ 3 − 3γ − α = 0. We have shown that γ is a root of the polynomial
4X3 − 3X − α with α = cos(θ) and thus we have indeed γ = cos( θ

3 ) as wanted. �
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The strategy of variable elimination in the arithmetic proof is motivated by calculating the
Gröbner basis of the ideal I generated by f1 = Z2 + W 2 − 1, f2 = 3W 2 + 2Y W − X2 +
2X Z − Z2 − Y 2, f3 = XW + 2Z W − Y Z , f4 = X2 + Y 2 − 1 with respect to some term
order. From the proof we get

(3X + 6Z) f1 − (X + 2Z) f2 + 2Y f3 − X f4 = 2(4Z3 − 3Z − X).

We briefly give some more details: By using the lexicographic term order � with Y � W �
X � Z we get {Y − 4W Z2 + W, W 2 + Z2 − 1, X − 4Z3 + 3Z} as the reduced Gröbner
basis for I; in particular this implies that f1, f2, f3, f4 do not generate the polynomial ring
Q[X, Y, Z , W ]. We could have proved also other relations, e.g., taking the lexicographic
term order with X � Z � Y � W gives the reduced Gröbner basis {X + 4Z W 2 −
Z , Z2 + W 2 − 1, Y + 4W 3 − 3W } for I and therefore we get 4δ3 − 3δ + β = 0 which
proves the correctness once again. The use of Gröbner basis is the algorithmic link between
algebraization and proving that certain algebraic relations hold. We mention that such
techniques are also used in [2].

Observe that there are also other Origami constructions that trisect a given angle (cf. [20,
p. 34ff] and the footnote in [5, p. 285]). In conclusion we see that Origami can solve at
least some equations of degree three. When looking at the steps in the construction of the
Origami angle trisection, it is clear that the critical step is step iii). The dashed line in Fig. 1
is the crease needed for that step. With the notation of the arithmetic proof, the equation for
this crease is given by 2(γ X + δY ) = 1 where γ satisfies the equation 4γ 3 − 3γ − α = 0
and similarly δ satisfies the equation 4δ3 − 3δ + β = 0. In other words finding that fold
is equivalent to solve these particular cubic equations. The question arises which numbers
can be constructed by using Origami. We shall discuss this in the next section.

3 Intermezzo on mathematical paper folding

The discussion on the constructability by Origami can be started similarly to the classifi-
cation of constructable numbers in Section 1. We have already said what we mean by a
line and a point and which folding operations are allowed. Let N ⊆ A2(R) be a set with
0, 1 ∈ N . We denote by N the set of all points in the plane that can be constructed in a
finite number of steps by the following operations:

(1) For any two points from N , there is a unique fold through both of them.

(2) Given two points P1, P2 ∈ N , then we can fold P1 onto P2.

(3) Given two lines defined over N , then we can fold one line to lie on the other one.

(4) Given a point P ∈ N and a line defined over N , there is a fold perpendicular to the
line passing through the point P .

(5) Given two points P1, P2 ∈ N and a line defined over N , then there is a fold that
places P1 on the line such that the crease passes through P2.

(6) Given two points P1, P2 ∈ N and two lines defined over N , then there is a fold that
places P1 on the first and P2 on the second line.

(7) Given a point P ∈ N and two lines defined overN , then there is a fold perpendicular
to the second line that places P on the first line.
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The first six axioms were found by H. Huzita (cf. [18] and also [13]) and the seventh by
K. Hatori and independently by J. Justin and by R. Lang. They are called the Huzita-Hatori
axioms for origametric geometry (sometimes the Huzita-Justin axioms). It was proved by
Lang that these axioms completely describe all operations that can be performed by paper
folding (see [20]) and therefore they are now the fundamentals of the mathematical theory
of paper folding.

We say that z ∈ R is Origami-constructable if the point (z, 0) is in N . Let O(N ) be the set
of Origami-constructable numbers and Q(N ) the field generated over Q by the coordinates
of the points in N . By examining the axioms it can be shown that the following theorem
holds (we do not give all details in the proof):

Theorem 2. The following statements are equivalent:

(i) z ∈ O(N ).

(ii) There is a sequence of quadratic or cubic field extensions K0 := Q(N ) ⊂ K1 ⊂
K2 ⊂ . . . ⊂ Kn ⊂ R with z ∈ Kn.

(iii) z is contained in a Galois-extension K of Q(N ) with [K : Q(N )] = 2a3b for some
non-negative integers a, b.

Proof. The equivalence of (i) and (ii) follows from algebraization of the axioms, which
shows that axioms (1)–(7) are equivalent to Origami-construct the roots of any irreducible
polynomial of degree at most three with coefficients that are already Origami-construct-
able. For this see [20] or [1, 19].

The equivalence of (ii) and (iii) follows as in the classical case (cf. [3]): Given (ii) we just
take the normal closure of Kn , which is a Galois-extension and of order divisible only by
2 and 3 since only elements of this order are used to generate it. Conversely, given (iii) we
conclude by a famous theorem of Burnside (cf. [4]) that the Galois group of K is solvable.
This means that there is a subnormal series whose quotients are cyclic groups of order 2
or 3. By Galois theory this precisely corresponds to a tower of field extensions as claimed
in (ii). �

We give a brief discussion on the axioms and their role concerning the quadratic and cubic
field extensions above. The axioms (1)–(5) and (7) are equivalent to solve any quadratic
equations with coefficients in O(N ). In fact already the points that can be constructed by
(1)–(5) are the same as the constructable points K(N ) by compass and ruler. Moreover,
(2), (3), and (5) are equivalent to (1)–(5). Axiom (7) just allows to solve certain quadratic
equations. Axiom (6) however is equivalent to solve arbitrary cubic equations. In [20] this
is deduced directly by studying the relevant algebraic equations. R. Alperin in [1] identified
the pair given by a point and a line by a conic whose focus is the given point and directrix
is the given line and uses some basic algebraic geometry. In this language (6) is equivalent
to construct the simultaneous tangent line to the two parabolas with the given data of foci
and directrices. From there it is also easy to see that conversely any cubic equation can by
solved by this Origami step: Take the conics

(
Y − a

2

)2 = 2bX, Y = 1

2
X2,
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with Origami-constructable foci and directrices; then it is easy to verify that the common
tangent has slope z satisfying z3 + az + b = 0; hence we can solve any cubic equation
with specified a, b ∈ O(N ) (see [1, p. 129]).
We mention that Hatori has shown that in fact axiom (6) is enough and the others follow
from it when we interpret a line placing P onto a given line on which P is already on either
as a line perpendicular to it or a line passing through P . Finally, we remark that Alperin and
Lang recently considered constructions where simultaneous folds are allowed and they for-
malized this in multi-fold axioms (cf. [2]); this in turn makes it possible to solve also alge-
braic equations of higher degree and to perform, for example, the quintisection of an angle.
In the next section we will discuss some further Origami constructions to well-known
problems.

4 Further Origami constructions
Motivated by the fact that Origami can solve old problems we can look for other such
results. Of course the antique problems of squaring or rectifying the circle are still out of
reach since that would mean to construct the transcendental number π (but compare with
[15]).
However, the Delian problem of doubling the cube can be solved by Origami since it just
means to construct the cube root of 2, i.e. the real solution to the cubic equation X3−2 = 0,
which in contrast is again not possible by compass and ruler. The construction is like this
(see Fig. 2):

C

A

B

D

C

P

1

P1

Fig. 2

Squaring the cube with Origami

i) Take a square sheet of paper and divide it parallel to BC into three equal parts. We
get two lines; the vertex of the lower line on the edge C D is denoted by P .
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ii) Make a fold such that C is on the edge AB and the point P is on the upper line that
divides BC into three parts.

iii) The ratio of lengths of AC1 to C1 B is 3
√

2.

This construction can be found in [24], where the correctness is also discussed. There
are also other Origami constructions for 3

√
2, e.g. based on solving the cubic equation

X3 − 2 = 0 (see [20]).

Another classical question is which regular polygons can be constructed by compass and
ruler. It is well-known (see [25]) that the regular n-gon is constructable if and only if
n = 2k p1 . . . pr for a non-negative integer k and distinct primes (called Fermat primes)
of the form p j = 2k j + 1 for j = 1, . . . , r . Analogously, one can show (cf. [11, 6])
that a regular n-gon is Origami-constructable if and only if n is of the form 2a3b p1 . . . ps

for non-negative integers a, b and distinct primes (called Pierpont primes) of the form
p j = 2a j 3b j + 1 for j = 1, . . . , s. Equivalently, the regular n-gon is constructable if
and only if ϕ(n) = 2l for a non-negative integer l, and Origami-constructable if and only
if ϕ(n) = 2c3d for non-negative integers c, d , where ϕ denotes Euler’s totient function.
An explicit folding construction can be found in [9] for n = 7 and in [10] for n = 9.
We mention that this implies that Origami solves also certain higher degree equations like
X7 − 1 = 0 or X9 − 1 = 0. Since we have Theorem 2 this of course implies that these
equations can be reduced to solve cubic and quadratic equations only, for X7 − 1 = 0 we
see that 2 cos( 2π

7 ) is a root of X3 + X2 − 2X − 1 = 0 and similarly cos( 2π
9 ) is a root of

8X3 − 6X + 1 = 0. For more details we also refer to [5].

5 Angle trisection with other tools
Finally, we come back to our main topic and discuss some other methods to trisect a
given angle. In fact it is well-known (cf. [23]) that angles can be trisected if one slightly
changes the rules of having compass and ruler. It goes back to Archimedes who used
neusis constructions to trisect an angle by compass and a marked ruler. This construction
is somewhat similar to what happens with Origami since there we have also marked a line
segment (namely B E in the notation of Section 2) and moved it such that it appeared with
certain properties (namely the vertices lie on certain lines).

The neusis construction of Archimedes on the other hand uses an anchor where the ruler is
fixed and then it is arranged such that the marked segment is at a specific position. Assume
that the angle θ is given by the line AB and the horizontal line (see Fig. 3). Then the
construction goes like follows:

Angle trisection with compass and marked ruler

i) Draw a circle with mid-point B and radius equal to the length of AB .

ii) Mark length AB at the ruler (if the ruler has a given mark then extend the line seg-
ment AB such that it has this length).

iii) Anchor the ruler at point A and move it until one end of the mark is on the circle and
the other one is on the horizontal line.

iv) �(ADB) = θ
3 .
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It is not too hard to check that the construction really works. Thus by marking the ruler one
can solve at least some cubic equations (namely those with all roots real). For more details
see [12, Chapter 6, p. 259ff]. In fact there it is shown that the set of real numbers that
are constructable by using compass and a marked ruler is the same as the set of Origami-
constructable numbers (cf. [11] and [12, Theorem 31.5 and Proposition 31.7]) since we
have the following equivalence:

(i) z ∈ R is constructable in a finite number of steps by compass and marked ruler
starting from a given set M ⊆ R2 with 0, 1 ∈ M.

(ii) There is a sequence of quadratic or cubic field extensions K0 = Q(M) ⊂ K1 ⊂
K2 ⊂ . . . ⊂ Kn ⊂ R with z ∈ Kn .

(iii) There is a sequence of field extensions K0 := Q(M) ⊂ K1 ⊂ K2 ⊂ . . . ⊂ Kn ⊂ R

where Ki+1 is obtained from Ki by adjoining
√

a with a ∈ Ki , a > 0, 3
√

a with
a ∈ Ki or cos( θ

3 ) with cos(θ) ∈ Ki such that z ∈ Kn .

(iv) There is a Galois-extension K over Q(M) with z ∈ K and [K : Q(M)] = 2a3b for
non-negative integers a, b.

This clearly also leads to the same conclusion for the construction of regular polygons as
in the Origami case.

Other methods of trisecting an angle use curves other than circles; such curves are called
trisectrices. For example one can use the limacon that is given in polar form by r =
1
2 + cos(θ), the cycloid of Ceva that is given by r = 1 + 2 cos(2θ) or the quadratrix of
Hippias that is given in implicit form by x = y cot(π

2 y).

We briefly describe the construction by using the limacon (see [22, Part VI, 1.]): At the
origin the curve has a double point and it consists of two closed loops the smaller one
contained in the larger one. We put the angle θ that we want to trisect between the lines
where the segment AB is on the x-axis and B is the origin.
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Angle trisection with limacon

i) Fit AB such that it fits exactly in the smaller loop, i.e. the point A is on the limacon.

ii) Extend the line segment BC such that its length is equal to AB .

iii) Draw the line AC .

iv) The point D in which it intersects the inner loop of the limacon has the property
θ = �(ABC) = 3�(AB D) and we have trisected the angle.

Even other tools like a protractor, a trisection tool, a tomahawk or a carpenter’s square can
be used and are in fact used in daily life for doing the job. For this and other methods we
refer to [22] that gives a nice and amusing collection of trisection methods.
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