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1 Introduction

This note grew out of a question that a student asked while the first-named author was
giving a lecture on triangle centers in a Geometry class in the fall of 2008. The student,
Shefa’a Bani Melhem, wondered about the point in a given triangle that, when joined to
the midpoints of the sides, divides the triangle into three quadrilaterals of equal area. Few
days later, the aforementioned author asked her to prove that such a point is necessarily
the centroid and to consider the point whose perpendiculars to the sides divide the triangle
into three quadrilaterals of equal area. This problem turned out to be more difficult than
was expected, and it is the purpose of this note to investigate the existence and uniqueness
of such a point and to describe its trilinear coordinates (or simply, its trilinears), i.e., its

.

In dem nachfolgenden Beitrag untersuchen die Autoren die naheliegende Fragestel-
lung, ob es in einem spitzwinkligen Dreieck ABC einen Punkt E mit der Eigenschaft
gibt, dass die drei Vierecke, die durch das Fällen der Lote von E auf die Dreiecks-
seiten entstehen, flächengleich sind. Die Autoren beweisen, dass es in einem spitz-
winkligen Dreieck genau einen solchen Punkt E gibt. Sie bestimmen auch die Glei-
chungen, denen die Abstände von E zu den Dreiecksseiten genügen. Im allgemeinen
ist der Punkt E vom Umkreis- und Innkreismittelpunkt sowie vom Schwerpunkt und
vom Höhenschnittpunkt verschieden. Fällt der Punkt E aber mit einem dieser klassi-
schen Zentren zusammen, so weisen die Autoren nach, dass ein gleichseitiges Dreieck
vorliegt.
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directed distances to the sides of the triangle. The question whether this center can coincide
with any of the traditional centers for a non-equilateral triangle is also addressed. We call
such a point the equiareality center and we denote it by E .

We show that E exists and is unique for acute triangles, and we write down equations that
define its trilinears. However, these equations, though quite simple looking and elegant,
are very hard to solve and everything suggests that this center is new. We also prove
that this new center does not coincide with any of the traditional centers except when the
triangle is equilateral.

In the course of investigation, a natural question arose and led to another center that we
denoted by E0. Its properties and relation to other centers are also explored.

Many of the items in this paper can be used as projects, homeworks, examination prob-
lems, and issues for classroom discussion in a first course in Euclidean Geometry. In
particular, dealing with the complexities that arise when one considers obtuse triangles is
expected to generate fruitful discussions and to lead to interesting results.

2 Existence and uniqueness of E for acute triangles

Theorem 3 below establishes the existence and uniqueness of E for acute triangles.
Lemma 1 is needed in its proof. In this lemma and throughout, the side lengths and angles
of a triangle ABC are denoted by a, b, c, A, B , C , in the standard order, and the symbol
[. . . ] stands for the area.

Lemma 1. Let ABC be an acute triangle and let X be a point on the side BC. Let XY ,
X Z be the perpendiculars dropped from X onto the sides AC, AB, respectively.

(i) If [XY C] ≥ [ABC]
4 , then [X Z B] < [ABC]

4 .

(ii) If A ≤ B and A ≤ C, then [X Z B]+[XY C]
[ABC] ≤ 1

2 .

Proof. (i) Suppose that [XY C] ≥ [ABC]/4. Let XC = t and let BS, CT be the perpen-
diculars dropped from B , C on AC , AB , respectively; see Fig. 1. Then

1

4
≤ [XY C]

[ABC] <
[XY C]
[SBC] = t2

a2 .

Therefore (t/a)2 > 1/4 and hence t/a > 1/2 and (a − t)/a < 1/2. Therefore

[X Z B]
[ABC] <

[X Z B]
[T BC] =

(a − t

a

)2
<

(1

2

)2 = 1

4
.

(ii) Let t , S, T be as in (i) and refer to Fig. 1 again. Suppose that A ≤ B , A ≤ C . Then
[ABC] ≥ 2[T BC], [ABC] ≥ 2[SBC]. It follows that

[X Z B]
[ABC] + [XY C]

[ABC] ≤ [X Z B]
2[T BC] + [XY C]

2[SBC] = t2

2a2 + (a − t)2

2a2 ≤ a2

2a2 = 1

2
,

as desired. �
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We remark that an interesting elaboration on Lemma 1(ii) can be found in [3].

Before proving the main theorem, we introduce notations and definitions that we shall use
throughout.

Definition 2. For any acute triangle ABC , and any point P inside (or on the boundary of)
ABC , we denote by PA, PB , PC the orthogonal projections of P on the sides BC , C A,
AB , respectively; see Fig. 2. We define α(P), β(P), γ (P) by

α(P) = [APC P PB ]
[ABC] , β(P) = [B PA P PC ]

[ABC] , γ (P) = [C PB P PA]
[ABC] . (1)

Note that if P is on the boundary, then some of these quadrilaterals degenerate into trian-
gles.

Theorem 3. For any acute triangle, there exists a unique point whose perpendiculars to
the sides divide the triangle into three quadrilaterals of equal area.

Proof. Let ABC be an acute triangle, and assume without loss of generality that
A≤ B ≤C .

Let P be any point on the line segment BC; see Fig. 3. As a point S moves from A to
P , α(S) increases from α(A) = 0 to α(P). By Lemma 1(ii), α(P) ≥ 1/2. Therefore,
there exists a unique point on AP for which α = 1/3. We denote this point by P∗.
Thus for every P on BC , P∗ is the point on AP for which α(P∗) = 1/3. In particular,
B∗ is the point on AB whose perpendicular B∗U to AC has the property that α(B∗) =
[B∗U A]/[ABC] = 1/3; see Fig. 4. Similarly, C∗ is the point on AC whose perpendicular
C∗V to AB has the property that α(C∗) = [C∗V A]/[ABC] = 1/3.

Since α(B∗) = 1/3 ≥ 1/4, Lemma 1(i) implies that β(B∗) < 1/4 < 1/3. Similarly,
γ (C∗) < 1/3. Since α(B∗) = α(C∗) = 1/3 and α + β + γ = 1, it follows that

β(B∗) <
1

3
, β(C∗) >

1

3
. (2)
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By continuity of the function P �→ β(P∗), there exists a point M on BC such that
β(M∗) = 1/3. Since α(M∗) = 1/3, it follows that α(M∗) = β(M∗) = γ (M∗) = 1/3,
and hence M∗ has the required property.

To prove uniqueness, let P , N be two points with the given property. Then N must lie
in one of the quadrilaterals determined by P , say N lies in C PB P PA ; see Fig. 5. Then
γ (N) ≤ γ (P) with equality if and only if N = P . Since γ (N) = γ (P) = 1/3, it follows
that N = P . �

Definition 4. For an acute triangle ABC , the point P for which

α(P) = β(P) = γ (P) (3)

is called the equiareality center of ABC and is denoted by E .

3 Trilinears of E
Let ABC be an acute triangle and let x , y, z be the trilinears of the equiareality center E .
Drop perpendiculars EY , EZ onto the sides AC , AB , respectively. Let A = 2ξ , B = 2η,
C = 2ζ . Let ∠B AE = ξ − p, ∠C AE = ξ + p; see Fig. 6. Then

z

y
= sin(ξ − p)

sin(ξ + p)
= sin ξ cos p − cos ξ sin p

sin ξ cos p + cos ξ sin p
= 1 − cot ξ tan p

1 + cot ξ tan p
,

cot ξ tan p = y − z

y + z
,

tan p = y − z

y + z
tan ξ.
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2[AZEY ] = yz sin(2ξ) + y cot(ξ + p) z cot(ξ − p) sin 2ξ

= yz sin(2ξ)(1 + cot(ξ + p) cot(ξ − p))

= yz sin(2ξ)

(
1 + 1 − tan ξ tan p

tan ξ + tan p

1 + tan ξ tan p

tan ξ − tan p

)

= yz sin(2ξ)
(1 + tan2 ξ)(1 − tan2 p)

tan2 ξ − tan2 p

= 2yz sin ξ cos ξ
sec2 ξ(1 − tan2 p)

tan2 ξ − tan2 p

= 2yz tan ξ
1 − tan2 p

tan2 ξ − tan2 p

= 2yz tan ξ
(y + z)2(1 − tan2 p)

(y + z)2 tan2 ξ − (y − z)2 tan2 ξ

= (y + z)2 − (y − z)2 tan2 ξ

2 tan ξ
.

We may assume that [ABC] = 3/2. Then we have

(y + z)2 − (y − z)2 tan2 ξ = 2 tan ξ,

(1 − tan2 ξ)(y2 + z2) + 2yz(1 + tan2 ξ) = 2 tan ξ,

(y2 + z2) cos A + 2yz − sin A = 0.

We record this in the following theorem.

Theorem 5. The trilinears x : y : z of the equiareality center E of an acute triangle ABC
are defined by the equations

(y2 + z2) cos A + 2yz − sin A = 0,

(z2 + x2) cos B + 2zx − sin B = 0,

(x2 + y2) cos C + 2xy − sin C = 0.





(4)
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4 Coincidence of E with the other traditional centers
Let ABC be a triangle and let G, O, I, H denote its centroid, circumcenter, incenter,
orthocenter, respectively. We shall show that E cannot coincide with any of these centers
except when ABC is equilateral. For E to be defined, we assume of course that ABC is
acute.

Note that to study the possible coincidence of E with a center whose trilinears (x0, y0, z0)

are given, one needs only substitute (x, y, z) = λ(x0, y0, z0) in (4) and then solves the
resulting equations. This may turn out to be difficult and clumsy. In this case, a purely
geometric treatment would be desirable. Also, it may turn out that the (α : β : γ )-
coordinates (as defined in (1)) of a given center P are easy to calculate. One then sets
these equal to (1 : 1 : 1) and solves the resulting equations. All of these approaches are
illustrated below.

For the reader’s convenience, we list below trilinears and barycentrics of the traditional
centers. For these and anything that has to do with triangle centers, we refer the reader to
[4] and [5].

Center Trilinears Barycentrics

Centroid G
(

1
a : 1

b : 1
c

)
(1 : 1 : 1)

Circumcenter O (cos A : cos B : cos C) (sin 2A : sin 2B : sin 2C)

Incenter I (1 : 1 : 1) (a : b : c) = (sin A : sin B : sin C)

Orthocenter H (sec A : sec B : sec C) (tan A : tan B : tan C)

In the next theorems, we refer to (1) for the definitions of α, β, γ .

Theorem 6. If ABC is an acute triangle in which E = I or E = O, then ABC is
equilateral.

Proof. Using the facts that

(
α(I) : β(I) : γ (I)

) =
(

cot
A

2
: cot

B

2
: cot

C

2

)
,

(
α(O) : β(O) : γ (O)

) = (sin 2B + sin 2C : sin 2A + sin 2C : sin 2A + sin 2B) ,(
α(E) : β(E) : γ (E)

) = (1 : 1 : 1) ,

we conclude that

I = E =⇒ cot
A

2
= cot

B

2
= cot

C

2
=⇒ A = B = C,

O = E =⇒ sin 2B + sin 2C = sin 2C + sin 2A = sin 2A + sin 2B

=⇒ sin 2A = sin 2B = sin 2C =⇒ A = B = C.

The last implication follows from the fact that the possibility 2B + 2C = π leads to
A = π/2, contradicting the assumption that ABC is acute. This will be freely used
later. �
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Theorem 7. If ABC is an acute triangle in which E = G, then ABC is equilateral.

Proof. It is obvious that the medians AA′, B B ′, CC ′ of ABC divide ABC into six trian-
gles of equal areas; see [1, Theorem 5]. Therefore the quadrilaterals GC ′ AB ′, GA′BC ′,
GB ′C A′ have equal areas. Also, the orthocenter H of ABC must lie in one of these
quadrilaterals, say in GB ′C A′; see Fig. 7. Then

∠B B ′C ≤ π

2
, ∠AA′C ≤ π

2
. (5)

Hence the orthogonal projections J , I of G onto the sides C A, C B , respectively, lie in
the quadrilateral GB ′C A′, and thus G IC J lies inside GB ′C A′. If E = G, then these
quadrilaterals have the same area and hence B ′ = J and A′ = I . Thus the medians B B ′,
AA′ are perpendicular to the respective sides and the triangle is equilateral, as claimed. �

A

B CVA′ I

G
S

A

B ′
J

H

Fig. 7

V

A

B C

S

T

Fig. 8

Theorem 8. If ABC is an acute triangle in which E = H, then ABC is equilateral.

Proof. Let AV , BS, CT be the altitudes of ABC (necessarily through H); see Fig. 8.
Clearly the triangles C SV and C B A are similar with similarity ratio C S/C B = cos C .
Therefore [C SV ]/[C B A] = cos2 C . Similarly, [BV T ]/[C B A] = cos2 B . Hence

[C SV ]
[BV T ] = cos2 C

cos2 B
. (6)

Also, it follows from the cyclicity of the quadrilaterals ATHS, BVHT , C SHV that the
angles of V ST are given by

V = π − 2A, S = π − 2B, T = π − 2C, (7)

and that AV , BS, CT are the angle bisectors of the triangle V ST . Therefore

[V SH]
[V TH] = (V S)(VH) sin ∠HV S

(V T )(VH) sin ∠HV T
= V S

V T
= sin T

sin S
= sin(π − 2C)

sin(π − 2B)
= sin 2C

sin 2B
. (8)
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Note also that

sin 2C − sin 2B = 2 cos(C + B) sin(C − B) = −2 cos A sin(C − B). (9)

Suppose now that C > B . Then it follows from (8) and (9) that [V SH] < [V TH]. It also
follows from (6) that [C SV ] < [BV T ]. Adding, we obtain [C SHV ] < [BVHT ]. Thus
we have proved that

C > B =⇒ γ (H) < β(H). (10)

Suppose now that E = H. Then γ (H) = β(H) and hence C = B . Similarly B = A and
ABC is equilateral. �

Remark 9. It is well-known that if any two of the centers G, I, O, H of a triangle
coincide, then the triangle is equilateral; see [2] and the references therein. It also goes
without saying that all centers of an equilateral triangle coincide.

In view of Remark 9 above, Theorems 6, 7, 8 can be summarized in the next theorem.

Theorem 10. An acute triangle is equilateral if and only if two (and hence all) of the
centers E , G, I, O, H coincide.

5 Another related center

Let ABC be an acute triangle. For X on BC , let XY , X Z be the perpendiculars from X
dropped onto the sides AC , AB , respectively. As X moves from B to C , [X Z B]/[XY C]
increases from 0 to ∞. Thus there exists a unique point, to be denoted by A′, for which
[X Z B] = [XY C]. We define B ′, C ′ similarly.

Theorem 11. The cevians AA′, B B ′, CC ′ are concurrent. The barycentrics of the point
of concurrence are given by

√
sin 2A : √

sin 2B : √
sin 2C, (11)

and the trilinears are given by
√

cot A : √
cot B : √

cot C . (12)

Proof. Observe that if X lies on BC and if t = C A′, as shown in Fig. 1, then the condition
[X Z B] = [XY C] is equivalent to (a − t)2 cos B sin B = t2 cos C sin C , i.e., (a − t)2 :
t2 = sin 2C : sin 2B. Concurrence of AA′, B B ′, CC ′ follows immediately from Ceva’s
theorem. It also follows that if P is the point of concurrence, then [P AB] : [P AC] =
(a − t) : t = √

sin 2C : √
sin 2B. Hence the barycentrics of P are as given in (11). The

statement about the trilinears follows from

√
sin 2A

a
∼

√
sin 2A

sin A
=

√
2 sin A cos A

sin2 A
∼ √

cot A. �
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Definition 12. The point of concurrence will be denoted by E0.

Theorem 13. An acute triangle is equilateral if and only if two (and hence all) of the
centers E , E0, G, I, O, H coincide.

Proof. In view of Remark 9 above and in view of the symmetry, it is sufficient to show
that each of the assumptions E0 = G, E0 = O, E0 = I, E0 = H, E0 = E leads to A = B .
But

E0 = G =⇒ √
sin 2A = √

sin 2B =⇒ A = B,

E0 = O =⇒ sin 2A√
sin 2A

= sin 2B√
sin 2B

=⇒ sin 2A = sin 2B =⇒ A = B,

E0 = I =⇒ sin A√
sin 2A

= sin B√
sin 2B

=⇒ tan A = tan B =⇒ A = B,

E0 = H =⇒ tan A√
sin 2A

= tan B√
sin 2B

=⇒ sin A

cos3 A
= sin B

cos3 B

=⇒ tan A
(

1 + tan2 A
)

= tan B
(

1 + tan2 B
)

=⇒ A = B, because x(1 + x2) is increasing.

It remains to deal with the case E = E0. If E = E0, then a multiple of the trilinears of E0
given in (12) must satisfy the equations (4) for the trilinears of E . Substituting (x, y, z) =
λ (

√
cot A,

√
cot B,

√
cot C) in the first equation in (4), we obtain

λ2
(

cos B

sin B
+ cos C

sin C

)
cos A + 2λ2

√
cos B cos C

sin B sin C
= sin A.

Multiplying by (sin B sin C)/λ2 and using the identity cos B sin C +sin B cos C = sin(B +
C) = sin A, we obtain

sin A cos A + 2
√

sin B cos B sin C cos C = sin A sin B sin C

λ2 .

Using the double angle formula, we obtain

sin 2A + 2
√

sin 2B sin 2C = 2 sin A sin B sin C

λ2 .

Using the other two equations in (4), and letting

u = √
sin 2A, v = √

sin 2B, w = √
sin 2C,

we obtain
u2 + 2vw = v2 + 2wu = w2 + 2uv.

Therefore

(u − v)(u + v − 2w) = (v − w)(v + w − 2u) = (w − u)(w + u − 2v) = 0.
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If no two of u, v, w are equal, then u + v − 2w = v +w − 2u = 0, and hence u + v +w =
3w = 3u, and the contradiction w = u. If exactly two of u, v, w are equal, say u = v �= w,
then v + w − 2u = 0 and hence the contradiction w = u. We are left with the possibility
u = v = w, i.e., sin 2A = sin 2B = sin 2C . Therefore A = B = C . �

6 The obtuse case

If ABC is an obtuse triangle and if P is a point inside ABC , then the perpendiculars P X ,
PY , P Z from P to the sides BC , C A, AB do not necessarily fall onto the sides; see Fig. 9.
In this case, parts of the quadrilaterals PY AZ , P Z B X , P XCY fall outside the triangle,
and some of these quadrilaterals are self crossing; see Fig. 9. It would be interesting to

A

Y

PZ

X B C

Fig. 9

explore possibilities of assigning areas to such quadrilaterals in such a way that the sum
of the areas of PY AZ , P Z B X , P XCY is still equal to that of ABC . One would also
like to do the same for points outside ABC . Then one would investigate the existence and
uniqueness of a point P , inside or outside ABC , for which the areas of PY AZ , P Z B X ,
P XCY are equal. Calling such a point an equiareality point, one may try to characterize
those obtuse triangles that have an interior equiareality point, and those obtuse triangles
that have an interior equiareality point P for which the three associated quadrilaterals lie
inside ABC .
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