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1 Introduction
The evaluation of finite sums involving binomial coefficients appears throughout the un-
dergraduate curriculum. Students are often exposed to identities such as

n∑

k=0

(
n

k

)
= 2n and

n∑

k=0

(
n

k

)2

=
(

2n

n

)
. (1.1)

.

Identitäten, die Binomialkoeffizienten beinhalten, tauchen in der mathematischen Lite-
ratur in den verschiedensten Bereichen auf. Ein Beispiel dafür ist die uns aus der Schule
bekannte Formel

∑n
k=0

(n
k

) = 2n , welche sich unmittelbar aus dem binomischen Lehr-
satz ergibt. In der vorliegenden Arbeit untersuchen die Autoren eine Variation dieses
Themas und beweisen eine geschlossene Formel für eine Summe von Produkten von
Binomialkoeffizienten. Interessant daran ist, dass vier verschiedene Beweise für diese
Formel gegeben werden: ein erster Beweis mit Hilfe der Methode von Wilf/Zeilberger,
ein zweiter unter Verwendung von Laurent-Polynomen, ein dritter mit hypergeome-
trischen Funktionen und ein letzter Beweis, der komplexe Integration verwendet. Die
Arbeit schließt mit einem noch unvollständigen kombinatorischen Beweis, der dem
Leser als Übungsaufgabe überlassen ist.
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Elementary proofs abound: the first identity results from choosing x = y = 1 in the
binomial expansion of (x + y)n . The second one may be obtained by comparing the
coefficient of xn in the identity (1 + x)n(1 + x)n = (1 + x)2n. The reader is surely aware
of many other proofs, including some combinatorial in nature.
At the end of the previous century, the evaluation of these sums was trivialized by the work
of H. Wilf and D. Zeilberger [8]. In the preface to the charming book, the authors begin
with the phrase

You’ve been up all night working on your new theory, you found
the answer, and it is in the form that involves factorials,
binomial coefficients, and so on, ...

and then proceed to introduce the method of creative telescoping discussed in Section 3.
This technique provides an automatic tool for the verification of these type of identities.
The points of view presented in [3] and [10] provide an entertaining comparison of what
is admissible as a proof.
In this short note we present a variety of proofs of the identity
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The common value is

2−2m
(

4m + 1

2m

)
= 2−2m−1

(
4m + 2

2m + 1

)
.

2 The origin
The formula (1.2) comes from an unexpected source. Several evaluations of

N0,4(a; m) :=
∞∫

0

dx

(x4 + 2ax2 + 1)m+1 ,

for a > −1 and m ∈ N, in the form

N0,4(a; m) = π

2m+3/2 (a + 1)m+1/2
Pm(a),

are given in [1]. Here Pm(a) is a polynomial in a. The first expression obtained for Pm(a)

in [6], via elementary methods, is

Pm(a) =
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The reader will find the details in [5, p. 140]. The alternative expression

Pm(a) = 2−2m
m∑

k=0

2k
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)(
m + k

m

)
(a + 1)k

appeared first in [4]. The complexity of these expressions lead the authors to evaluate it at
a = 1. This produced (1.2).
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3 A proof using the WZ method

An efficient procedure to prove the identity an = bn is to produce a recurrence satisfied by
both sequences and matching the required initial conditions. For example, to prove

n∑

k=0

(
n

k

)
= 2n,

it suffices to check that both sides satisfy xn = 2xn−1 and they share the initial condition
x0 = 1. The real question is how to produce the recurrence. In this case, it is easier to look
for a recurrence for the summand

(n
k

)
and then sum over k. The basic identity

(
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)
=
(
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k

)
+
(
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)
,

after summing over all values of k yields the desired recurrence. The result now follows
from checking initial values.

H. Wilf and D. Zeilberger [7, 8, 9] came up with a breakthrough in producing an algorithm
that provides the recurrence for the summand tn,k in sn = ∑

k tn,k . The method applies to
terms tn,k of hypergeometric type; that is tn+1,k/tn,k and tn,k+1/tn,k are rational functions
of the indices. This so-called WZ-method has been implemented in modern symbolic
languages. For instance, Maple shows that both sides of (1.2) satisfy the recurrence

(2m + 3)(2m + 2) f (m + 1) = (4m + 5)(4m + 3) f (m). (3.1)

The identity (1.2) now follows from the fact that both sides reduce to 1 at m = 0. Further-
more, iterating (3.1) yields

f (m) = 2−2m
(

4m + 1

2m

)
.

4 A constant term approach

The second identity in (1.1) arises from matching the coefficient of xn in the trivial identity
(1 + x)n (1 + x)n = (1 + x)2n . The proof of (1.2) presented in this section is based on
producing (Laurent) polynomials whose constant terms give the two sides, respectively.

The presence of the binomial coefficient
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)
in (1.2) suggests to consider
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which is the right-hand side of (1.2). From

(
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2

)2m+1

= (t + 1)4m+2

(2t)2m+1

this constant term evaluates to 2−(2m+1)
(4m+2
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)
.

The left-hand side comes from the constant term in the identity (1+t)−1/2×(1+t)−m−1 =
(1 + t)−m−3/2. In this product, employ the expansions

(1 + t)−1/2 =
∞∑
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)
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)
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to compute the coefficient of tm of the product. Observe that only terms up to order m
contribute to this computation. Thus,
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)
(−t)m−k =
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)
(−t)k

shows that the constant term of t−m(1 + t)−m−1(1 + t)−1/2 is the left-hand side of (1.2).
That is,

(−1)m
(−m − 3

2
m

)
= 1

22m+1

(
4m + 2
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)

giving the result.

5 An excursion into the hypergeometric world

A natural setting of binomial sums such as (1.2) is in the context of hypergeometric func-
tions. These are functions defined by a power series

∑∞
n=0 anxn where the ratio an+1/an

is a rational function of the index n. A classical example is given by

2 F1

(
a b

c
; x

)
:=

∞∑

k=0

(a)k(b)k

(c)k

xk

k! .

Here (a)k = a(a + 1)(a + 2) . . . (a + k − 1) is the ascending factorial. Observe that the
function 2 F1 is symmetric in a and b. Moreover, if a is a negative integer, the sum is finite
and the function reduces to a polynomial.

Proposition 5.1 The identity (1.2) is equivalent to

2 F1

( − 1
2 − m −m

1
; 1

)
=
(

2m

m

)
2 F1

( 1
2 −m

−2m
; 1

)
. (5.1)
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Proof . The relations
( 1

2

)
k = 2−2k(2k)!/k! and

(−r)k =





(−1)kr !
(r − k)! for 0 ≤ k ≤ r,

0 otherwise,

show that the right-hand side of (1.2) and (5.1) agree. Similarly, the relation

(− 1
2 − m

)
k = (−1)k(2m + 1)! (m − k)!

22k (2m − 2k + 1)! m!
shows that the left-hand side of (1.2) and (5.1) agree. �

The hypergeometric terms in (5.1) can be evaluated using a classical formula of Gauss [2]:

2 F1

(
a b

c
; 1

)
= �(c)�(c − a − b)

�(c − a)�(c − b)

and the specialization

2 F1

( −n b
c

; 1

)
= (c − b)n

(c)n
.

The identity
(−x)n = (−1)n(x − n + 1)n

completes the argument.

6 A contour integration approach
Complex analytic techniques are useful in establishing identities involving binomial coef-
ficients. The representation

(
m

n

)
= 1

2π i

∫

|z|=r

(1 + z)m

zn+1
dz

for r > 0 provides the relevant connection. This will now be employed to produce a proof
of (1.2).

The left-hand side becomes, for an appropriate choice of radii r1 and r2,
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∫
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4zw2 − (1 + z)2
dw dz.
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The choice of r2 = 1 and Cauchy’s residue theorem imply that the inner integral is the
sum of the residues at the poles w = ±(1 + z)/2

√
z. This yields
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Expand the integrand to verify that it is a rational function of z which is analytic away
from the origin. The pole at z = 0 is of order m + 1 with residue 2−2m−1

(4m+2
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)
. This

produces the right-hand side of (1.2).

The left-hand side of (1.2) is
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The only pole of the integrand, inside the contour, is z = 1
w
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1

2π i

∫

|z|= 1
2

4 dz

−wz2 + (4 + 2w)z − w
= 1√

1 + w
.

This shows that the left-hand side is
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The identity
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)
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completes the proof. �
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7 A partial combinatorial proof

Consider the set X of lattice paths in the plane that start at (0, 0), taking unit steps N =
(0, 1), S = (0,−1), E = (1, 0) and W = (−1, 0), of odd length 2m +1, and ending at the
y-axis. It is clear that the number of E steps is the same as the W steps, call it j . Choose
the steps that are either E or W in

(2m+1
2 j

)
ways. Then choose which is E and which is

W in
(2 j

j

)
ways. Finally choose the remaining 2m + 1 − 2 j steps to be either N or S in

22m+1−2 j ways. This gives

|X | =
m∑

j=0

(
2m + 1

2 j

)(
2 j

j

)
22m+1−2 j .

Thus, the right-hand side of (1.2) gives the cardinality of the set X , aside from the factor
22m+1.

The size of X is now evaluated by exhibiting a bijection between X and Y that makes
counting simpler. The new set Y is formed by all paths on the x-axis that start and end at
0, take steps e = +1 and w = −1, and have length 4m + 2. It will be shown that there is a
bijection from Y to X . Clearly there must be 2m + 1 of each kind of steps, and so the size
of Y is

|Y | =
(

4m + 2

2m + 1

)
.

The proof is completed by noticing that there is a simple bijection between X and Y
given by

E �→ ee, W �→ ww, N �→ ew, S �→ we.

It remains to produce a combinatorial interpretation of the left-hand side of (1.2). The
reader is invited to produce one: the authors have been unable to do so.
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