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1 Introduction
The Riemann Hypothesis (RH) is the most famous unsolved problem in mathematics. It
is an assertion about the Riemann zeta function which, if true, would provide an optimal
form of the Prime Number Theorem.

In his book Gamma: Exploring Euler’s Constant [4, p. 207], J. Havil claims that the
following conjecture is “a tantalizingly simple reformulation” of the RH.

Havil’s Conjecture. If

∞∑

n=1

(−1)n

na
cos(b ln n) = 0 and

∞∑

n=1

(−1)n

na
sin(b ln n) = 0

for some pair of real numbers a and b, then a = 1/2.

.

Die Riemannsche Vermutung ist das derzeit berühmteste ungelöste Problem der Ma-
thematik. Sie betrifft die Nullstellen der Riemannschen ζ -Funktion. Bereits Euler
kannte deren Verbindung zu den Primzahlen, und ein Beweis der Riemannschen Ver-
mutung hätte unter anderem weitreichende Folgen in der Zahlentheorie. Insbesondere
liesse sich die Restgliedabschätzung von Helge von Koch im Primzahlsatz daraus ab-
leiten. In seinem Buch Gamma: Exploring Euler’s Constant formuliert J. Havil eine
Vermutung über ein Paar von trigonometrischen Reihen und stellt eine Verbindung zur
Riemannschen Vermutung her. Der Autor des vorliegenden Beitrags legt nun aber ein
Beispiel vor, welches die Vermutung von Havil widerlegt, jedoch nicht die Riemann-
sche Vermutung. Zudem wird bewiesen, dass eine abgeschwächte Form der Vermutung
von Havil tatsächlich äquivalent zur Riemannschen Vermutung ist.
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We first explain the RH and its connection with Havil’s Conjecture. Then we show that the
pair of real numbers a = 1 and b = 2π/ln 2 is a counterexample to Havil’s Conjecture,
but not to the RH. Finally, we prove that Havil’s Conjecture becomes a true reformulation
of the RH if his conclusion “then a = 1/2” is weakened to “then a = 1/2 or a = 1.”

2 The Riemann Hypothesis
In 1859 Riemann published a short paper On the number of primes less than a given
quantity [5], his only one on number theory. Writing s for a complex variable, at first he
assumes that its real part �(s) is greater than 1, and he begins with Euler’s product-sum
formula

∏

p

1

1 − 1

ps

=
∞∑

n=1

1

ns
(�(s) > 1).

Here the product is over all primes p. To see the equality, expand each factor 1/(1−1/ps)

in a geometric series, multiply them together, and use unique prime factorization.

Euler proved his formula only for real s (> 1). He used it to give a new proof of Euclid’s
theorem on the infinitude of the primes: if there were only finitely many, then as s → 1+
the left-hand side of the formula would approach a finite number while the right-hand side
approaches the harmonic series

∑
1/n = ∞. Going further than Euclid, Euler also used

his formula to show that, unlike the squares, the primes are so close together that

1

2
+ 1

3
+ 1

5
+ 1

7
+ 1

11
+ 1

13
+ 1

17
+ 1

19
+ 1

23
+ 1

29
+ 1

31
+ 1

37
+ · · · = ∞.

Aiming to go even further, Riemann develops the properties of the Riemann zeta function
ζ(s). He defines it first as the sum of the series in Euler’s formula,

ζ(s) =
∞∑

n=1

1

ns
= 1

1s
+ 1

2s
+ 1

3s
+ · · · (�(s) > 1), (1)

which converges by comparison with the p-series (here p = �(s))

∑∣∣∣∣
1

ns

∣∣∣∣ =
∑ 1

n�(s)
.

Using other formulas for ζ(s), Riemann extends its definition to the whole complex plane,
where it has one singularity, a simple pole at s = 1, reflecting Euler’s observation that
ζ(s) → ∑

1/n = ∞ as s → 1+.

Riemann analyzes the zeros of ζ(s), which he calls the roots of the equation ζ(s) = 0.
He shows that there are none in the right half-plane {s : �(s) > 1}, and that the only ones
in the left half-plane {s : �(s) < 0} are the negative even integers s = −2,−4,−6, . . ..
(These real zeros had been found by Euler more than a century earlier – see [1].)

Turning his attention to the zeros in the closed strip {s : 0 ≤ �(s) ≤ 1}, Riemann proves
that they are symmetrically located about the vertical line �(s) = 1/2. Using an integral,
he estimates the number of them with imaginary part between 0 and some bound T .
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Then he says:

One finds in fact about this many [on the line] within these bounds and it is very
likely that all of the [zeros in the strip are on the line]. One would of course
like to have a rigorous proof of this; however, I have tentatively put aside the
search for such a proof after some fleeting vain attempts . . .

Thus was born the now famous and still unproven RH.

The Riemann Hypothesis. If ζ(s) = 0 and s �= −2,−4,−6, . . ., then �(s) = 1/2.

Around 1896 Hadamard and de la Vallée Poussin, independently, took a step in the direc-
tion of the RH by proving that ζ(s) �= 0 on the line �(s) = 1. This was a crucial ingredient
in their proofs of the Prime Number Theorem (PNT), which estimates π(x), the number of
primes p with 2 ≤ p ≤ x . Conjectured by Gauss in 1792 at the age of 15, the PNT says
that

π(x) ∼ x

ln x
.

That is, as x → ∞ the limit of the quotient

π(x)

x/ln x

exists and equals 1. More accurately, Gauss guessed that π(x) ∼ Li(x), where

Li(x) =
x∫

2

dt

ln t

is the logarithmic integral, which is equal to x/ln x plus a smaller quantity. If the RH
is true, then the PNT’s estimate π(x) ∼ Li(x) comes with a good bound on the error
π(x) − Li(x). Namely, the RH implies that the inequality

|π(x) − Li(x)| < Cx
1
2 +ε

holds for any ε > 0 and all x ≥ 2, where C is a positive number that depends on ε but not
on x . In fact, this inequality is equivalent to the RH, and the appearance of 1/2 in both is
not a coincidence.

Since ζ(s) �= 0 whenever �(s) = 1, the symmetry of the zeros in the strip {s : 0 ≤ �(s) ≤
1} implies that they lie in the open strip {s : 0 < �(s) < 1}. In 1914 Hardy proved that
infinitely many of them lie on the line �(s) = 1/2. That lends credence to the RH, but of
course does not prove it.

Hardy’s result was later improved by Selberg and others, who showed that a positive per-
centage of the zeros in the strip lie on its center line. Using computers and further theory,
the first 1013 zeros have been shown to lie on the line. For more on the RH, the PNT, and
their historical background, see [2], [3], and [4, Chapter 16].

In order to relate the RH to Havil’s Conjecture, we need to introduce a function closely
related to ζ(s).
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3 The alternating zeta function

For s with positive real part, the alternating zeta function ζ∗(s) (also known as the Dirichlet
eta function η(s)) is defined as the sum of the alternating series

ζ∗(s) =
∞∑

n=1

(−1)n−1

ns
= 1

1s
− 1

2s
+ 1

3s
− 1

4s
+ 1

5s
− 1

6s
+ · · · (�(s) > 0),

which we now show converges.

Since �(s) > 0, the nth term approaches 0 as n → ∞, so that we only need to show
convergence for the series formed by grouping the terms in odd-even pairs. Writing each
pair as an integral

1

ns
− 1

(n + 1)s
= s

∫ n+1

n

dx

xs+1

with n odd, we set σ = �(s) and bound the integral:
∣∣∣∣∣

∫ n+1

n

dx

xs+1

∣∣∣∣∣ ≤
∫ n+1

n

dx∣∣xs+1
∣∣ =

∫ n+1

n

dx

xσ+1
<

1

nσ+1
.

As the series
∑

n−σ−1 converges, so does the alternating series for ζ∗(s).
When �(s) > 1 the alternating series converges absolutely, and so we may rewrite it as
the difference

ζ∗(s) = 1

1s
+ 1

2s
+ 1

3s
+ 1

4s
+ 1

5s
+ 1

6s
+ · · · − 2

(
1

2s
+ 1

4s
+ 1

6s
+ · · ·

)

= 1

1s
+ 1

2s
+ 1

3s
+ 1

4s
+ 1

5s
+ 1

6s
+ · · · − 2

2s

(
1

1s
+ 1

2s
+ 1

3s
+ · · ·

)

= ζ(s) − 2

2s
ζ(s).

Thus the alternating zeta function is related to the Riemann zeta function by the simple
formula

ζ∗(s) =
(

1 − 21−s
)

ζ(s). (2)

We derived it for s with �(s) > 1, but a theorem in complex analysis guarantees that the
formula then remains valid over the whole complex plane.

At the point s = 1, the simple pole of ζ(s) is cancelled by a zero of the factor 1 − 21−s .
This agrees with the fact that ζ∗(s) is finite at s = 1. Indeed, ζ∗(1) is equal to Mercator’s
alternating harmonic series

ζ∗(1) = 1 − 1

2
+ 1

3
− 1

4
+ 1

5
− 1

6
+ · · · = ln 2.

The product formula (2) shows that ζ∗(s) vanishes at each zero of the factor 1 − 21−s with
the exception of s = 1. (This can also be proved without using (2) – an elementary proof
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is given in [6].) It is a nice exercise to show that the zeros of 1 − 21−s lie on the line
�(s) = 1, and occur at the points sk given by

sk = 1 + i
2πk

ln 2
(k = 0,±1,±2,±3, . . .).

Thus sk is also a zero of ζ∗(s) if k �= 0.

Since 1 − 21−s �= 0 when �(s) �= 1, relation (2) also shows that ζ∗(s) and ζ(s) have the
same zeros in the strip {s : 0 < �(s) < 1}. The first one is

ρ1 = 0.5 + 14.1347251417346937904572519835624702707842571156992 . . . i,

the Greek letter ρ (rho) standing for root. Using a calculator, the reader can see it is likely
that ζ∗(ρ1) = 0. But be patient: at s = ρ1 the alternating series for ζ∗(s) converges very
slowly, because its nth term has modulus

∣∣(−1)n−1n−ρ1
∣∣ = n−1/2. For example, to get

n−1/2 < 0.1, you need n > 100.

If we substitute the series for ζ∗(s) into equation (2) and solve for ζ(s), we obtain the
formula

ζ(s) = 1

1 − 21−s

∞∑

n=1

(−1)n−1

ns
(�(s) > 0, s �= 1). (3)

Since the series converges whenever �(s) > 0, the right-hand side makes sense for all
s �= 1 with positive real part, the first factor’s poles at s = sk �= 1 being cancelled by
zeros of the second factor. Thus the formula extends the definition (1) of ζ(s) to a larger
domain.

We can now explain the relation between the RH and Havil’s Conjecture.

4 A counterexample to Havil’s Conjecture

Let’s write s = a + ib, where a and b are real numbers. Euler’s famous formula

eix = cos x + i sin x

shows that

1

ns
= 1

na+ib
= 1

na
e−ib ln n = 1

na (cos(b ln n) − i sin(b ln n)) .

Now if a = �(s) > 0, then

ζ∗(s) =
∞∑

n=1

(−1)n−1

ns
=

∞∑

n=1

(−1)n−1

na (cos(b ln n) − i sin(b ln n)) (4)

= −
∞∑

n=1

(−1)n

na
cos(b ln n) + i

∞∑

n=1

(−1)n

na
sin(b ln n).

Up to sign, the last two series are the real and imaginary parts of ζ∗(s). Hence ζ∗(s) = 0
if and only if both series vanish. Since they are the same series as in Havil’s Conjecture
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and ζ∗(s) = 0 at s = s1 = 1 + 2π i/ln 2, the pair of real numbers a = 1 and b = 2π/ln 2
is a counterexample to Havil’s Conjecture.

On the other hand, since the theorem of Hadamard and de la Vallée Poussin says that ζ(s)
has no zeros with real part equal to 1, the point s1 = 1 + 2π i/ln 2 is not a counterexample
to the RH. Therefore, Havil’s Conjecture is not a reformulation of the RH.

From looking at the two series in his conjecture it is not at all clear that they are equal
to 0 when a = 1 and b = 2π/ln 2. This shows the power of the alternate formulation
ζ∗(s1) = 0.

To conclude, we give a true reformulation of the RH.

5 The RH without tears

Here is a corrected version of Havil’s Conjecture.

New Conjecture. If

∞∑

n=1

(−1)n

na
cos(b ln n) = 0 and

∞∑

n=1

(−1)n

na
sin(b ln n) = 0 (5)

for some pair of real numbers a and b, then a = 1/2 or a = 1.

Let’s show that this is indeed a reformulation of the RH.

Proposition 1. The New Conjecture is true if and only if the RH is true.

Proof. Suppose that the New Conjecture is true. Assume that ζ(s) = 0 and that
s �= −2,−4,−6, . . .. By Riemann’s results and the Hadamard-de la Vallée Poussin theo-
rem, s lies in the open strip {s : 0 < �(s) < 1}. Then relation (2) gives ζ∗(s) = 0. Writing
s = a+ ib, equation (4) yields the equalities in (5), and so by the New Conjecture a = 1/2
or a = 1. But a = �(s) and �(s) < 1. Hence �(s) = 1/2. Thus the New Conjecture
implies the RH.

Conversely, suppose the RH is true. Assume a and b satisfy condition (5). In particular,
both series in (5) converge, and so their nth terms tend to 0 as n → ∞. It follows that the
sum of the squares of the nth terms, namely, n−2a , also tends to 0. Hence a > 0. Then
with s = a + ib equation (4) applies, and (5) yields ζ∗(s) = 0. Now relation (2) shows
that s is a zero of ζ(s) or of 1 − 21−s . In the first case the RH says a = 1/2, and in the
second case we know a = 1. Thus the RH implies the New Conjecture. �
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