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0 Introduction and notations

A well-known theorem in geometry of triangles is the following:

If equilateral triangles are erected externally on the sides of any triangle, their
centres form an equilateral triangle.

This theorem can be found in [3] and is often attributed to Napoleon Bonaparte, although
it is questionable whether he knew enough geometry for this achievement, see [1].

There are several generalisations of this theorem. One is the following, which can be found
in [7, 4.] or [1, Theorem 3.36]:

.

Seit über einem Jahrhundert sind geometrische Transformationen von Dreiecken
Gegenstand mathematischer Untersuchungen. In dem vorliegenden Artikel wird ein
Ausgangsdreieck in ein neues Dreieck transformiert, indem auf jeder der Dreiecks-
seiten ein gleichschenkliges, nach außen gerichtetes Aufsatzdreieck errichtet wird. Die
Scheitelpunkte der Aufsatzdreiecke bilden die Eckpunkte des neuen Dreiecks. Durch
wiederholtes Anwenden dieser Transformation erhält man eine Folge von Dreiecken.
Die Form der Dreiecke dieser Folge konvergiert gegen eine charakteristische Dreiecks-
form, von der nachgewiesen wird, dass sie mit jedem Transformationsschritt echt an-
genähert wird.
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If similar triangles PC B, C Q A, and B AR are erected externally on the sides
of any triangle ABC, their circumcentres form a triangle similar to the three
triangles.

I.M. Yaglom proves in [8, I.2, 22] the following generalisation of the theorem above:

On the sides of an arbitrary triangle ABC, exterior to it, isosceles triangles
C B A1, AC B1, B AC1 are erected with angles at the vertices A1, B1, and C1,
respectively equal to α, β, and γ . If α + β + γ = 2π , then the angles of the
triangle A1 B1C1 are equal to 1

2α, 1
2β, and 1

2γ .

Note that the case α = β = γ = 2
3π is just the same as taking the centres of equilateral

triangles. It is easy to check that these two generalisations are equivalent by decomposing
each external triangle into three isosceles triangles that have a common vertex in the cir-
cumcentre (note that the angles at the circumcentre are just the double of the angles of the
triangle).

Considering the formulation of Yaglom, we drop the condition α+β +γ = 2π and repeat
the transformation to obtain an infinite sequence of triangles. In doing so, the angles α,
β, and γ stay fixed. We analyse two cases. In the first case, all three angles are the same.
In the second case, two angles coincide and the third equals π (hence, the corresponding
erected triangle is degenerate). Equivalently to the second case, we may erect only two
similar isosceles triangles and take the centre of the remaining side as the third vertex of
the new triangle. We prove that in both cases, the shape of the triangles converge to the
shape of the triangle one would get if the condition α + β + γ = 2π were satisfied. That
is an equilateral triangle in the first case and a rectangular isosceles triangle in the second
case.

In this article �0 always denotes the initial triangle with vertices A0, B0, and C0 (ordered
counterclockwise). For n ∈ N the points An+1, Bn+1, and Cn+1 are defined recursively
such that AnCn Bn+1, Bn AnCn+1, Cn Bn An+1 are isosceles triangles. The triangle with
vertices An , Bn , and Cn is denoted by �n . The side-lengths of �n are denoted by xn :=
BnCn , yn := Cn An , and zn := An Bn and the angles are denoted by αn := ∠Bn AnCn ,
βn := ∠Cn Bn An , and γn := ∠AnCn Bn .

We do not demand the triangle to be non-degenerate. The degenerate case where all three
points are pairwise distinct but on a common line will be used to show that some given
bounds are sharp. In the other degenerate cases there have to be vertices of the triangle
that coincide and hence there has to be a side of length 0. Although such a side has no
direction, this does not cause any problems for the iteration since in this case, the erected
triangle always degenerates to a single point. Thus, the new vertex coincides with the two
old ones. As a direct consequence, the degenerate case where all three points coincide is
without any interest since such a triangle is invariant under all transformations introduced
above. Therefore, we exclude the case A0 = B0 = C0 for all of this article.

1 Equilateral case
In this section, the triangles erected externally on the sides of �n are similar to each other.
More precisely, there is an angle 0 < θ < π/2 such that ∠An+1 BnCn = ∠BnCn An+1 =
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Fig. 1 Transformation with similar isosceles externally erected triangles

∠Bn+1Cn An = ∠Cn An Bn+1 = ∠Cn+1 An Bn = ∠An BnCn+1 = θ . The so erected trian-
gles are also known as Kiepert triangles, see [2]. The main result of this section can also
be found in [5] where the convergence of this transformation is studied by considering the
dominating eigenvalue. In this paper, we give a different proof of this result, which allows
us a more detailed view at the process of convergence.

Remark 1.1. The lines An An+1, Bn Bn+1, and CnCn+1 meet in a common point P , see
[2] for a proof. Note that this point is inside the triangle �n if and only if all angles of �n

are < π − θ .

We first show how the side-lengths of the triangle �n+1 can be expressed in terms of the
preceding triangle. Regarding the transformation there is no distinction between xn , yn ,
and zn . Therefore we state the claims usually for only one instance, but we will use in the
following the analogue statements as well.

Lemma 1.2. Let En denote the area of �n. Then the following identities hold:

x2
n+1 = 1

2
tan2 θ · (y2

n + z2
n) + 1

4
(1 − tan2 θ) · x2

n + 2 tan θ · En, (1.1)

x2
n+1 − y2

n+1 = 1

4
(1 − 3 tan2 θ)(x2

n − y2
n ). (1.2)

Proof. Note that AnCn+1 = 1/(2 cos θ) · zn and An Bn+1 = 1/(2 cos θ) · yn . Hence,
applying the law of cosines to the triangle AnCn+1 Bn+1 yields

x2
n+1 = 1

4 cos2 θ
· y2

n + 1

4 cos2 θ
· z2

n − 2 · 1

4 cos2 θ
· ynzn cos(2θ + αn)

= 1

4 cos2 θ
(y2

n + z2
n) − cos(2θ + αn)

2 cos2 θ
· ynzn .
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Using the addition theorems for the cosine and the sine we obtain cos(2θ+αn) = (cos2 θ−
sin2 θ) cos αn − 2 sin θ cos θ sin αn . Applying this and En = (sin αn/2)ynzn to the identity
above leads to

x2
n+1 = 1

4 cos2 θ
(y2

n + z2
n) − (1 − tan2 θ)

2
cos αn · ynzn + tan θ sin αn · ynzn

= 1

4 cos2 θ
(y2

n + z2
n) − 1 − tan2 θ

2
· y2

n + z2
n − x2

n

2
+ 2 tan θ · En

=
(

1 − cos2 θ

4 cos2 θ
+ 1

4
tan2 θ

)
· (y2

n + z2
n) + 1

4
(1 − tan2 θ) · x2

n + 2 tan θ · En

= 1

2
tan2 θ · (y2

n + z2
n) + 1

4
(1 − tan2 θ) · x2

n + 2 tan θ · En .

The second equation is a direct consequence of the first one together with its analogue for
yn+1. �

Corollary 1.3. Let xn ≥ yn. Then

xn+1 ≥ yn+1 if θ ≤ π

6
and

xn+1 ≤ yn+1 if θ ≥ π

6
,

where equality on the left-hand sides holds if and only if θ = π/6 or xn = yn.

Proof. This is a direct consequence of (1.2) since tan2(π/6) = 1/3. �

Remark 1.4. We may assume that in the initial triangle x0 is the greatest side and z0 is the
smallest. If θ < π/6, the corollary above implies that xn is the greatest side of �n and zn

is the smallest one for every n. If θ > π/6, things are different. For even n, we still have
xn ≥ yn ≥ zn , whereas xn ≤ yn ≤ zn holds for odd n. In the special case θ = π/6, the
triangle �n is equilateral for every n > 0. This observation is a motivation to consider the
two subsequences (�2n)n∈N and (�2n+1)n∈N sometimes separately.

To study the behaviour of corresponding side-lengths during the iteration, we state some
estimates. First, note the following two simple inequalities, which will be used several
times.

Lemma 1.5. Let r and s be two positive real numbers. Then r2 + s2 ≥ 1
2 (r + s)2 and

r2 + s2 ≥ 2rs.

Proof. Since (r−s)2 is positive, we obtain 4r2+4s2 ≥ (4r2−(r−s)2)+(4s2−(s−r)2) =
(3r − s)(r + s)+ (3s − r)(s + r) = (2r + 2s)(r + s). Subtracting 2(r2 + s2) on both sides
implies the second claim. �
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Lemma 1.6. For the corresponding side-lengths of subsequent triangles, the following
lower bounds hold:

xn+1 ≥ 1

2
xn, (1.3)

x2
n+2 ≥ 1

16
(9 tan4 θ + 1) · x2

n . (1.4)

Moreover, if �n is non-degenerate, both bounds are strict.

Proof. By Lemma 1.5 we obtain y2
n + z2

n ≥ 1
2 (yn + zn)2 ≥ 1

2 x2
n . Applying this to (1.1)

yields

x2
n+1 ≥ 1

4
tan2 θ · x2

n + 1

4
(1 − tan2 θ) · x2

n + 2 tan θ · En ≥ 1

4
x2

n .

Now the first inequality follows directly. In the last step we subtracted 2 tan θ · En . Since
tan θ > 0, equality cannot occur if �n is non-degenerate. Using the analogues of (1.1)
provides the following identity:

y2
n+1 + z2

n+1 = tan2 θ

2
(2x2

n + y2
n + z2

n) + 1 − tan2 θ

4
(y2

n + z2
n) + 4 tan θ · En

= tan2 θ · x2
n + 1 + tan2 θ

4
(y2

n + z2
n) + 4 tan θ · En.

We apply this to the analogue of (1.1) for x2
n+2:

x2
n+2 ≥ 1

2
tan2 θ

(
tan2 θ · x2

n + 1 + tan2 θ

4
(y2

n + z2
n) + 4 tan θ · En

)

+ 1 − tan2 θ

4

(
tan2 θ

2
(y2

n + z2
n) + 1 − tan2 θ

4
· x2

n + 2 tan θ · En

)

= tan2 θ

4
(y2

n + z2
n) + 8 tan4 θ + (1 − tan2 θ)2

16
· x2

n + 3 tan3 θ + tan θ

2
· En

≥ tan2 θ

8
· x2

n + 9 tan4 θ − 2 tan2 θ + 1

16
· x2

n

= 9

16
tan4 θ · x2

n + 1

16
x2

n .

In the last but one step we subtracted (3 tan3 θ + tan θ)En/2. Since 3 tan3 θ + tan θ > 0,
equality cannot occur if �n is non-degenerate. �

The first lower bound given in the previous lemma is sharp as one can check by considering
the degenerate case αn = π and yn = zn . The second lower bound is sharp, too. This can
be seen by considering again the degenerate case αn = π and yn = zn while θ tends to 0.
As a consequence of these two estimates, we state the following theorems.

Theorem 1.7. For n ≥ 1, the side-lengths of �n are all > 0.
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Proof. We may assume that �n−1 is degenerate since otherwise the claim follows directly
from (1.3).

Since �0 has at least one side of length > 0, (1.3) implies that every triangle has at least
one side of length > 0. Suppose xn = 0. Then (1.3) yields xn−1 = 0. Thus, En−1 = 0
and consequently, x2

n = tan2 θ · (y2
n−1 + z2

n−1)/2 by (1.1). We know y2
n−1 + z2

n−1 > 0
since otherwise all vertices of �n−1 would coincide. With tan2 θ > 0 we obtain xn > 0, a
contradiction. �

Theorem 1.8. We have:

If 0 < θ <
π

6
, then lim

n→∞ xn = 0.

If
π

6
< θ <

π

2
, then lim

n→∞ xn = ∞.

If θ = π

6
, then xn = x1 ∀n > 0.

Proof. First let 0 < θ < π/6. Assume x0 ≥ y0 ≥ z0. Then xn ≥ yn ≥ zn for every n
by Remark 1.4. Hence, limn→∞ xn = 0 implies limn→∞ yn = limn→∞ zn = 0. Thus, it
suffices to prove the claim for the case x0 ≥ y0 ≥ z0. Since xn ≥ yn ≥ zn , we obtain
αn ≥ βn ≥ γn by the law of sines. This implies γn ≤ π/6 and hence, sin γn ≤ √

3/2. With
En = (sin γn/2)xn yn , we obtain by (1.1)

x2
n+1 ≤ 1

2
tan2 θ · (y2

n + z2
n) + 1

4
(1 − tan2 θ) · x2

n +
√

3

2
tan θ · xn yn

≤
(

1

4
+ 3

4
tan2 θ +

√
3

2
tan θ

)
· x2

n .

Now θ < π/6 implies tan θ <
√

3/3 and consequently 1
4 + 3

4 tan2 θ +
√

3
2 tan θ < 1. The

claim follows.

Now let π/6 < θ < π/2. Assume x0 ≤ y0 ≤ z0. Then x2n ≤ y2n ≤ z2n for every
n by Remark 1.4. Hence, limn→∞ x2n = ∞ implies limn→∞ y2n = limn→∞ z2n = ∞.
Thus, to prove limn→∞ x2n = ∞ it suffices to consider the case x0 ≤ y0 ≤ z0. Let n be
even. Since xn ≤ yn ≤ zn , we obtain αn ≤ βn ≤ γn . This implies γn ≥ π/6 and hence,
sin γn ≥ √

3/2. With En = (sin γn/2)xn yn , we obtain by (1.1)

z2
n+1 ≥ 1

2
tan2 θ · (x2

n + y2
n) + 1

4
(1 − tan2 θ) · z2

n +
√

3

2
tan θ · xn yn

≥
(

1

4
+ 3

4
tan2 θ +

√
3

2
tan θ

)
· x2

n .

Now θ < π/6 implies tan θ <
√

3/3 and consequently κ := 1
4 + 3

4 tan2 θ +
√

3
2 tan θ > 1.

Since zn+1 ≤ yn+1 ≤ xn+1 by Remark 1.4, we conclude analogously x2
n+2 ≥ κz2

n+1.
Thus, x2

n+2 ≥ κ2x2
n whenever n is even and consequently limn→∞ x2n = ∞. By analogous

reasons we obtain limn→∞ x2n+1 = ∞ and the claim follows.
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In the last case, we conclude by Corollary 1.3 that for every n > 0 the triangle �n is
equilateral. Furthermore, tan θ = √

3/3. Thus, for n > 0, (1.1) yields x2
n+1 = x2

n . �

Due to the unbounded growth of the triangles for θ > π/6 and the fact that for θ < π/6,
the triangle sequence collapses to a single point, the only reasonable case to study seems
to be the case where θ equals π/6. However, since we are interested in the shape of the
triangle, the size of the triangle does not matter.

We state another two simple inequalities for our further estimates.

Lemma 1.9. Let r , s, and t be positive real numbers all smaller than 1. Then 1 − s2 <

r(1 − t2) implies (1 − s) < r(1 − t).

Proof. We obtain 1 − s2 < 1 − t2 and therefore s > t . Thus, (1 − s) = (1 − s2)/(1 + s) <

r(1 − t2)/(1 + s) < r(1 − t2)/(1 + t) < r(1 − t). �

The following general proposition applies separately to the two triangle sequences, i.e. the
one with the even and the one with the odd indices. As in Remark 1.4 we assume x0 ≥ y0
for the following proposition.

Proposition 1.10. Let x0 > y0. Then for every angle θ , there is a constant 0 ≤ κ < 1
such that

0 ≤
∣∣∣∣1 − yn+2

xn+2

∣∣∣∣ ≤ κ

∣∣∣∣1 − yn

xn

∣∣∣∣,
where equality holds if and only if θ = π/6 or yn = xn.

Proof. First note that for n ≥ 1, Theorem 1.7 states xn > 0. Furthermore, since x0 ≥ y0
and the case A0 = B0 = C0 is excluded, we obtain x0 > 0. Now, (1.2) provides

x2
n+2 − y2

n+2 =
(

1

4
− 3

4
tan2 θ

)2

· (x2
n − y2

n)

and hence,

1 − y2
n+2

x2
n+2

= (1 − 3 tan2 θ)2

16
· x2

n

x2
n+2

(
1 − y2

n

x2
n

)
.

Thus, we may assume xn 	= yn since otherwise we are done. Applying (1.4) yields

∣∣∣∣1 − y2
n+2

x2
n+2

∣∣∣∣ ≤ (1 − 3 tan2 θ)2

1 + 9 tan4 θ

∣∣∣∣1 − y2
n

x2
n

∣∣∣∣.
Since 0 ≤ (1 − 3 tan2 θ)2 < 1 + 9 tan4 θ the claim follows for κ := (1 − 3 tan2 θ)2/(1 +
9 tan4 θ) by Lemma 1.9. Note that κ = 0 if and only if θ = π/6. �

For θ ≤ π/4, the ratio of side-lengths tends to 1 in every step of the iteration. In other
terms, the function n 
→ 1 − min{xn, yn}/ max{xn, yn} is strictly decreasing as long as the
values differ from 0. Note that for θ > π/6, the role of the smaller side-length alternates.
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Proposition 1.11. Let x0 > y0 and θ 	= π/6. Then there is a positive constant κ < 1 that
only depends on θ such that the following holds:

0 < 1 − yn+1

xn+1
≤ κ

(
1 − yn

xn

)
if θ <

π

6
,

0 < 1 − xn+1

yn+1
≤ κ

(
1 − yn

xn

)
if

π

6
< θ ≤ π

4
and n even,

0 < 1 − yn+1

xn+1
≤ κ

(
1 − xn

yn

)
if

π

6
< θ ≤ π

4
and n odd.

Proof. First note that xn > 0 and yn > 0 for n ≥ 1 by Theorem 1.7. Moreover, x0 > 0
since x0 ≥ y0 and the case A0 = B0 = C0 is excluded.

We set ω := 1 − 3 tan2 θ . First assume θ < π/6. Then xn > yn by Corollary 1.3. Further-
more, 0 < tan2 θ < 1/3 and therefore 0 < ω < 1. By (1.3) we know xn ≤ 2xn+1. Hence,
dividing both sides of (1.2) by x2

n+1 provides

1 − y2
n+1

x2
n+1

= ω

4
· x2

n

x2
n+1

(
1 − y2

n

x2
n

)
≤ ω

(
1 − y2

n

x2
n

)
.

Now the claim follows from Lemma 1.9 by setting κ := ω.

For θ > π/6, we know by Corollary 1.3 that xn > yn if n is even and yn > xn other-
wise. We restrict ourselves to the case where n is even. The other case can be obtained by
exchanging xn with yn , xn+1 with yn+1, and z0 with z1. Note that ω < 0 for θ > π/6.

We assume π/6 < θ < π/4. Then tan2 θ ≤ 1. Hence, (1.1) yields y2
n+1 ≥ 1

2 (x2
n +

z2
n) tan2 θ . Furthermore, tan2 θ ≤ 1 implies −ω ≤ 2 tan2 θ . We divide both sides of (1.2)

by −y2
n+1 and obtain

1 − x2
n+1

y2
n+1

= −ω

4
· x2

n

y2
n+1

(
1 − y2

n

x2
n

)

≤ tan2 θ

2
· 2x2

n

(x2
n + z2

n) tan2 θ

(
1 − y2

n

x2
n

)

= x2
n

x2
n + z2

n

(
1 − y2

n

x2
n

)
.

Now set ε := min{1, (z0/x0)
2}. Then Proposition 1.10 together with induction implies

z2
n ≥ εx2

n . The claim follows for κ := 1/(1 + ε) by using Lemma 1.9. �

Remark 1.12. For θ > π/4 and xn > yn , it is possible that 1 − xn+1/yn+1 exceeds
1 − yn/xn , especially if θ is close to π/2. However, in this situation there is another
observation one can make: While θ tends to π/2, the angle α2n tends to α0 for every n ∈ N.
Analogously, limθ→π/2 β2n = β0 and limθ→π/2 γ2n = γ0. Hence, the shape of �2 tends
to the shape of �0. On the other hand limθ→π/2 x1 = limθ→π/2 y1 = limθ→π/2 z1 = ∞
as long as �0 is non-degenerate. Thus, one cannot speak of a limit triangle.
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To avoid the enormous growth of the triangles, one can dilate each transformed triangle
after the iteration with the reciprocal of the largest side-length. Equivalently, one can apply
this dilation before the step of iteration. By doing so, �1 converges pointwise while θ

tends to π/2 as long as we take a fixed centre for the dilations. Thus, we obtain a limit
triangle which we call �′

1. Repeating this process leads to two sequences of pairwise
similar triangles �′

2n and �′
2n+1. The triangles �0 and �′

1 do not have to be similiar.

Clearly, while θ tends to π/2, the factor of the dilation we apply to �0 tends to 0. Thus,
the vertices A′

1, B ′
1, and C ′

1 of �′
1 lie on the lines through the dilation centre that are

perpendicular to one of the sides of �0. Moreover, the proportions of the distances from
the dilation centre to A′

1, B ′
1, C ′

1 match the proportions of z1, y1, x1. Hence, a triangle
similar to �′

1 can be obtained by taking three concurrent rays r0, r1, r2 such that r0 and r1
span the angle 2α0, r0 and r2 span the angle 2β0, and r1 and r2 span the angle 2γ0. Taking
the points on r0, r1, r2 at distance z0, y0, x0, respectively, to the intersection of the three
rays provides a triangle similar to �′

1.

Since �′
2 is similar to �0 again, the shape of �′

1 can be seen as some kind of dual shape
to the shape of �0.

The following theorem is our main result, namely, regarding only the shape of the triangles,
�n tends to an equilateral triangle for n → ∞.

Theorem 1.13. For every initial triangle �0 and every angle 0 < θ < π/2, the following
two limits hold:

lim
n→∞

xn

yn
= 1, lim

n→∞ αn = π

3
.

Proof. The first limit is a direct consequence of Proposition 1.10. The second limit follows
by the first together with the law of sines. �

We conclude this section by stating two theorems concerning the position and the orienta-
tion of the triangles.

Theorem 1.14. For every n > 0, the centroid of �n coincides with the centroid of �0.

Proof. We consider the Euclidean plane as vector space. For n ∈ N, let an , bn , and cn be
the vectors representing the points An , Bn , and Cn , respectively. Let δ be the linear trans-
formation that rotates the Euclidean plane by π/2. Then an+1 = 1

2 (bn +cn)+( 1
2 tan θ(bn −

cn))
δ . Since δ is linear, this implies an+1 +bn+1 + cn+1 = an +bn + cn. Thus, the centroid

of �n , defined as 1
3 (an + bn + cn) coincides with the one of �n+1. The claim follows by

induction. �

Theorem 1.15. For every n > 0, the triangle �n is non-degenerate and counterclockwise
oriented.

Proof. Assume that �n is non-degenerate and counterclockwise oriented. By symmetric
reasons we may assume xn ≥ yn ≥ zn . Hence, αn ≥ βn ≥ γn by the law of sines and
therefore βn ≤ π/2 and γn ≤ π/2.
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Let A′
n , B ′

n , and C ′
n denote the centres of BnCn , Cn An , and An Bn , respectively. Since

the triangle A′
nCn B ′

n is similar to �n , we obtain ∠Cn A′
n B ′

n = βn . On the other hand,
let l be the perpendicular bisector of the side Cn An , i. e. the line through B ′

n and Bn+1.
Since xn ≥ zn , the line l intersects xn in a point S. We obtain ∠Cn SBn+1 = π/2 − γn .
Thus, min{βn, π/2 − γn} ≤ ∠Cn A′

n Bn+1 ≤ max{βn, π/2 − γn} and therefore 0 <

∠Cn A′
n Bn+1 < π/2. Analogously, 0 < ∠Cn+1 A′

n Bn < π/2. This implies that the an-
gles ∠Cn+1 A′

n An+1 and ∠An+1 A′
n Bn+1 are greater than π/2 and smaller than π and

consequently, ∠Bn+1 A′
nCn+1 < π . We conclude that A′

n is inside the triangle �n+1 and
�n+1 is counterclockwise oriented since ∠An+1 A′

n Bn+1 < π . Now the claim follows by
induction. �

2 Rectangular isosceles case

As in the previous section, the points Bn+1 and Cn+1 are the apices of similar isosceles tri-
angles erected to the outside of �n over the edges yn and zn , respectively. More precisely,
there is an angle 0 < θ < π/2 such that ∠Bn+1Cn An = ∠Cn An Bn+1 = ∠Cn+1 An Bn =
∠An BnCn+1 = θ . In contrast to the previous section, the point An+1 is the centre of BnCn

(or, equivalently, the apex of a degenerate isosceles triangle with angle π).

Again, we first give equations for the side-lengths of the triangle �n+1 in terms of �n .
Regarding the transformation there is no distinction between yn and zn except for the
orientation. Therefore we state the claims usually for only one instance, but we will use
the analogue statements as well in the following.

Lemma 2.1. Let En be the area of �n. Then the following identities hold:

x2
n+1 = 1

2
tan2 θ · (y2

n + z2
n) + 1

4
(1 − tan2 θ) · x2

n + 2 tan θ · En, (1.1)

y2
n+1 = 1

4
· y2

n + 1

4
tan2 θ · z2

n + tan θ · En. (2.1)

An

Bn

Cn

Cn +1

An +1

Bn +1
Cn

n

n

n

n

Fig. 2 Transformation with two similar isosceles externally erected triangles and one midpoint of a side
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Proof. The first equation is obtained in precisely the same way as in the proof of
Lemma 1.2.

Let C ′
n be the centre of An Bn . Then Cn+1C ′

n = 1
2 tan θ ·zn and An+1C ′

n = 1
2 · yn . Applying

the law of cosines to the triangle An+1C ′
nCn+1 (possibly degenerate for αn = π/2 and

oriented clockwise for αn > π/2) yields

y2
n+1 = 1

4
· y2

n + 1

4
tan2 θ · z2

n − 2 · 1

4
tan θ · ynzn cos

(π

2
+ βn + γn

)
.

With cos(π/2 + βn + γn) = sin(−βn − γn) = sin(αn − π/2) = − sin(αn) and En =
1
2 sin αn · ynzn , the second identity follows. �

The following identities are immediate consequences of the previous lemma.

y2
n+1 − z2

n+1 = 1

4
(1 − tan2 θ) · (y2

n − z2
n), (2.2)

y2
n+1 + z2

n+1 = 1

4
(1 + tan2 θ) · (y2

n + z2
n) + 2 tan θ · En, (2.3)

x2
n+1 − y2

n+1 − z2
n+1 = 1

4
(1 − tan2 θ) · (x2

n − y2
n + z2

n). (2.4)

Corollary 2.2. Let yn ≥ zn. Then

yn+1 ≥ zn+1 if θ ≤ π

4
and

yn+1 ≤ zn+1 if θ ≥ π

4
,

where equality on the left-hand side holds if and only if θ = π/4 or yn = zn.

Proof. This is a direct consequence of (2.2) since tan(π/4) = 1. �

Since An+1 is obtained in a different way than Bn+1 and Cn+1, there is no corresponding
condition that involves xn and xn+1. Our next step is to give lower bounds for the side-
lengths after two steps of iteration.

Lemma 2.3. For the corresponding side-lengths of subsequent triangles, the following
lower bounds hold:

x2
n+2 ≥ 1

16
(1 + tan4 θ)x2

n , (2.5)

y2
n+2 ≥ 1

16
(1 + tan4 θ)y2

n . (2.6)
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Proof. We apply (2.3) and (1.1) to the analogue of (1.1) for x2
n+2:

x2
n+2 ≥ tan2 θ

2

(
1 + tan2 θ

4
· (y2

n + z2
n) + 2 tan θ · En

)

+ 1 − tan2 θ

4

(
tan2 θ

2
· (y2

n + z2
n) + 1 − tan2 θ

4
· x2

n + 2 tan θ · En

)

= tan2 θ

4
· (y2

n + z2
n) + (1 − tan2 θ)2

16
· x2

n + tan θ + tan3 θ

2
· En.

Now Lemma 1.5 implies y2
n + z2

n ≥ (yn + zn)2/2 ≥ x2
n/2 and thus,

x2
n+2 ≥ tan2 θ

8
· x2

n + 1 − 2 tan2 θ + tan4 θ

16
· x2

n

= 1

16
x2

n + 1

16
tan4 θ · x2

n .

Using (2.1) repeatedly yields

y2
n+2 ≥ 1

4
y2

n+1 + 1

4
tan2 θ · z2

n+1

≥ 1

16
y2

n + 1

8
tan2 θ · z2

n+1 + 1

16
tan4 θ · y2

n

≥ 1

16
y2

n + 1

16
tan4 θ · y2

n . �

As in the previous section, the lemma above motivates us to consider the sequence of
triangles as two separated sequences.

Theorem 2.4. For n ≥ 1, the side-lengths of �n are all > 0.

Proof. The side-length xn does not depend on An and hence, for a given triangle �n−1
and a given angle θ , the side-length xn is just the same as in the previous section. Thus,
xn > 0 by Theorem 1.7.

For yn and zn , we may assume that �n−1 is degenerate since otherwise the claim follows
directly from (2.1).

Since �0 has at least two sides of length > 0, (2.1) implies y1 > 0 and analogously,
z1 > 0. Now the claim follows by induction using (2.1). �

We proceed by studying the ratio of corresponding side-lengths.

Proposition 2.5. Let y0 ≥ z0. Then for every angle 0 < θ < π/2, there is a constant
0 ≤ κ < 1 such that

0 ≤
∣∣∣∣1 − zn+2

yn+2

∣∣∣∣ ≤ κ

∣∣∣∣1 − zn

yn

∣∣∣∣,
where equality holds if and only θ = π/4 or yn = zn.
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Proof. Note that yn > 0 for n ≥ 1 by Theorem 2.4. Moreover, y0 > 0 since otherwise
z0 = y0 = 0 and hence, A0 = B0 = C0. Now, (2.2) provides

y2
n+2 − z2

n+2 =
(

1

4
− 1

4
tan2 θ

)2

· (y2
n − z2

n)

and hence,

1 − z2
n+2

y2
n+2

= (1 − tan2 θ)2

16
· y2

n

y2
n+2

(
1 − z2

n

y2
n

)
.

We may assume yn 	= zn since otherwise we are done. Applying (2.6) yields∣∣∣∣∣1 − z2
n+2

y2
n+2

∣∣∣∣∣ ≤ (1 − tan2 θ)2

1 + tan4 θ

∣∣∣∣∣1 − z2
n

y2
n

∣∣∣∣∣ .
Since 0 ≤ (1 − tan2 θ)2 < 1 + tan4 θ the claim follows for κ := (1 − tan2 θ)2/(1 + tan4 θ)

by Lemma 1.9. Note that κ = 0 if and only if θ = π/4. �

Proposition 2.6. For every angle θ , there is a constant 0 ≤ κ < 1 such that

0 ≤
∣∣∣∣∣1 − y2

n+2 + z2
n+2

x2
n+2

∣∣∣∣∣ ≤ κ ·
∣∣∣∣∣1 − y2

n + z2
n

x2
n

∣∣∣∣∣ ,
where equality holds if and only θ = π/4 or x2

n = y2
n + z2

n.

Proof. By Theorem 2.4, the only possibility where one of the fractions is not defined is
the case n = 0 and x0 = 0. In this case, the term on the right-hand side can be understood
as a term of inifinite value, which makes the claim obviously true for this case. Formula
(2.4) provides

x2
n+2 − y2

n+2 − z2
n+2 =

(
1

4
− 1

4
tan2 θ

)2

· (x2
n − y2

n − z2
n)

and hence,

1 − y2
n+2 + z2

n+2

x2
n+2

=
(
1 − tan2 θ

)2

16
· x2

n

x2
n+2

(
1 − y2

n + z2
n

x2
n

)
.

We may assume x2
n 	= y2

n + z2
n since otherwise we are done. Applying (2.5) yields∣∣∣∣∣1 − y2

n+2 + z2
n+2

x2
n+2

∣∣∣∣∣ ≤ (1 − tan2 θ)2

1 + tan4 θ
·
∣∣∣∣∣1 − y2

n + z2
n

x2
n

∣∣∣∣∣ .
For κ := (1− tan2 θ)2/(1+ tan4 θ), the claim follows since 0 ≤ (1− tan2 θ)2 < 1+ tan4 θ .
Note that κ = 0 if and only if θ = π/4. �

We are now ready to state our main result. Regarding only the shape of the triangles, �n

tends to a rectangular isosceles triangle for n → ∞.
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Theorem 2.7. For every initial triangle �0 and every angle 0 < θ < π/2, the following
limits hold:

lim
n→∞

y2
n + z2

n

x2
n

= 1, lim
n→∞ αn = π

2
,

lim
n→∞

yn

zn
= 1, lim

n→∞ βn = π

4
.

Proof. The limits on the left-hand side are immediate consequences of Propositions 2.5
and 2.6. By the law of cosines we know cos αn = 1

2 (y2
n + z2

n − x2
n)/(ynzn). Now the limits

on the left-hand side imply limn→∞ cos αn = 0 and hence, limn→∞ αn = π/2. The last
limit follows from limn→∞ yn/zn = 1 together with the law of sines. �

As in the previous section, the size of the triangles becomes stable for only one specific
choice of θ . For every greater angle, the triangles grow unboundedly and for every smaller
angle, the triangles collapse to a single point.

Theorem 2.8.

If 0 < θ <
π

4
, then lim

n→∞ xn = lim
n→∞ yn = 0.

If
π

4
< θ <

π

2
, then lim

n→∞ xn = lim
n→∞ yn = ∞.

If θ = π

4
, then xn = x1 = √

2 · y1 = √
2 · yn ∀n > 0.

Proof. First let 0 < θ < π/4. Then tan θ < 1 and hence, (2.3) implies

y2
n+1 + z2

n+1 <
1

2
(y2

n + z2
n) + tan θ sin αn · ynzn

≤ 1

2
(y2

n + z2
n) + tan θ · ynzn .

With Lemma 1.5 we conclude y2
n+1+z2

n+1 < 1
2 (1+tan θ)(y2

n +z2
n). Since 1

2 (1+tan θ) < 1,
this implies limn→∞(y2

n + z2
n) = 0 and hence, limn→∞ yn = limn→∞ zn = 0. The claim

follows.

For π/4 < θ , we obtain tan θ > 1. Let ε > 0 such that tan θ > (1 + ε)2. By Theorem
2.7 there are natural numbers nz and nα such that (1 + ε/2)zn > yn for every n > nz and
(1 + ε/2) sin αn > 1 for every n > nα . Set n0 := max{nz, nα}. Then for every n > n0,
(2.1) implies

y2
n+1 >

1

4
· y2

n + 1

4
(1 + ε)4 · z2

n + (1 + ε)2 · 1

2
sin αn · ynzn

>
1

4
· y2

n + 1

4
(1 + ε)2 · y2

n + 1

2
· y2

n

>
(

1 + ε

2

)
y2

n .

Thus, limn→∞ yn = ∞. Now limn→∞ xn = ∞ follows from Theorem 2.7.
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For the last case, Corollary 2.2 implies yn = zn for every n > 0. The rest follows
from (2.4). �

We conclude this section with a statement concerning the orientation of the triangles �n .

Theorem 2.9. For every n > 0, the triangle �n is non-degenerate and counterclockwise
oriented.

Proof. Assume that �n is non-degenerate and counterclockwise oriented. By symmetric
reasons we may assume yn ≥ zn . Let B ′

n and C ′
n denote the centres of Cn An and An Bn ,

respectively.

First we consider the case xn ≥ yn . Then αn ≥ βn and αn ≥ γn by the law of sines
and therefore βn ≤ π/2 and γn ≤ π/2. Since the triangle An+1Cn B ′

n is similar to �n ,
we obtain ∠Cn An+1 B ′

n = βn . On the other hand, let l be the perpendicular bisector
of the side yn , i. e. the line through B ′

n and Bn+1. Since xn ≥ zn , the line l intersects
BnCn in a point S. We obtain ∠Cn SBn+1 = π/2 − γn . Thus, min{βn, π/2 − γn} ≤
∠Cn An+1 Bn+1 ≤ max{βn, π/2 − γn} and therefore 0 < ∠Cn An+1 Bn+1 < π/2. Analo-
gously, 0 < ∠Cn+1 An+1 Bn < π/2. This implies ∠Cn+1 An+1 Bn < π and the claim holds
for �n+1.

Now assume xn < yn . Then we obtain analogously to the above 0 < ∠An B ′
nCn+1 < π/2

and ∠An+1 B ′
nCn = αn < π/2. Thus, both angles ∠An+1 B ′

n Bn+1 and ∠Bn+1 B ′
nCn+1 are

greater than π/2 and smaller than π and consequently, ∠Cn+1 B ′
n An+1 < π . We conclude

that B ′
n is inside the triangle �n+1 and that the claim holds for �n+1.

We complete the proof by applying induction. �

3 Further remarks and outlook

The “missing” case where only on one side, say BnCn , an isosceles triangle is erected and
for the other two sides the centre is taken is not very interesting. Following I.M. Yaglom
[8, I.2, 22], the distinguished angle for the isosceles triangle would be ∠Cn An+1 Bn = 0
and therefore θ = ∠An+1 BnCn = ∠BnCn An+1 = π , which is not possible. One gains the
idea that the shape to which the triangles converge should be degenerate. Moreover, since
every possible choice θ is smaller than π , the triangles should collapse to a single point.
These claims are easy to prove: One can see immediately xn+1 = xn/2. Furthermore,
yn+1 < yn/2+tan θ ·xn/2 and zn+1 < zn/2+tan θ ·xn/2. Thus, the ratios xn/yn and yn/zn

tend to 0 while yn/zn converges to 1. After reaching the point tan θ · xn < yn , we obtain
additionally yn+1 < yn . The analogue holds for zn . Hence, limn→∞ xn = limn→∞ yn =
limn→∞ zn = 0.

Consequently, for triangles, the next task would be to consider three different angles θx , θy ,
and θz for the isosceles triangles that are erected on the sides of �n . Furthermore, instead
of isosceles triangles one can erect arbitrary triangles on the sides of �n . One possibility
to determine the triangles uniquely is to demand besides the angle θ (which we now ask
for only one of the two possibilities) also the ratio λ in which the side adjacent to the old
triangle is subdivided by the orthocentre. This is in the spirit of [6] where the convergence
of this transformation is studied by using its eigenvalues.
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Another possible generalisation would be to consider instead of the triangle �0 an arbitrary
polygon. Of course, the transformation still uses isosceles triangles erected on the sides
of the polygon. The convergence of these transformations has been studied in [5] together
with the first case of this article. A possible application of this transformation is an element
oriented mesh smoothing method based on successively applying this transformation to the
polygonal bounded elements of triangular element surface meshes [4].
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