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I first met Ernst Specker at the 2010 Zürich conference in honor of his 90th birthday, so
I am not in a position to contribute reminiscences. Like all set theorists, however, I met
Specker’s mathematics early and often in my mathematical career. At the Zürich meet-
ing I reported briefly on some of his contributions to set theory and on some recent de-
velopments that build on those contributions. I thank Norbert Hungerbühler and János
Makowsky for giving me the opportunity to contribute this note, based on my Zürich talk.

The time constraints of the talk and the space constraints of this note require me to limit
myself to just three of Specker’s set theory papers. Each of the three sections that follow
concerns one of the papers and the subsequent developments flowing from it.

1 Sur un problème de Sikorski

Unpublished work of Specker closely related to this paper [18] showed the existence of
Specker lines. These are linearly ordered sets of cardinality ℵ1 such that no uncountable
subset is well-ordered, anti-well-ordered, or embeddable into the real line ℝ (with the
usual order).

1. Partially supported by NSF grant DMS-0653696

.

Ernst Specker hat richtungsweisende Beiträge in verschiedensten Gebieten der Mathe-
matik geleistet: Topologie, Algebra, Mathematische Logik, Mengenlehre, Kombinato-
rik und Algorithmik. Es ist nicht möglich einen kurzen Überblick über sein Werk zu
geben. Im vorliegenden Beitrag zeigt Andreas Blass jedoch für drei ausgewählte Ar-
beiten von Ernst Specker zur Mengenlehre auf, welche weiteren Entwicklungen die
darin enthaltenen Resultate initiiert haben.
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The existence of Specker lines was the key to the proof by Galvin and Shelah [8] of the
negative partition relation

ℵ1 �−→ [ℵ1]24.
That is, one can partition the set of 2-element subsets of a set A of size ℵ1 into four pieces
in such a way that every uncountable subset of A contains pairs from all four pieces.
Indeed, such a partition can be obtained by choosing three linear orderings of A: a well-
ordering ≤1, an ordering ≤2 embeddable into ℝ, and an ordering ≤3 as a Specker line.
The two-element subsets {a, b} of A are then classified according to which of ≤1, ≤2, and
≤3 agree on {a, b}. It is easy to see that any uncountable subset must contain pairs from
at least three of the four classes; with more work, Galvin and Shelah improved this from
three to all four.

Without a Specker line, this approach would yield only the weaker, classical theorem of
Sierpiński [16] that ℵ1 �−→ [ℵ1]22. Later, a different approach enabled Todorčević [21] to
prove the strongest possible result of this sort, ℵ1 �−→ [ℵ1]2ℵ1

.

Saharon Shelah [15] solved a long-standing problem by proving the existence of a Coun-
tryman line, i.e., a linear order 〈L,≤〉 of cardinality ℵ1 such that L × L, with the com-
ponentwise partial order, is the union of countably many chains. It is not hard to see that
every Countryman line is a Specker line. It is even easier to see that there cannot be an iso-
morphism between an uncountable subset of a Countryman line and a subset of the same
line with the reverse order. (The graph of an isomorphism, as a subset of L × L, would
meet each chain of L × L at most once.) These facts make Countryman lines an important
ingredient of the basis problem for uncountable linear orders: How large must a family ℬ
of linear orders of size ℵ1 be so that every linear order of size ℵ1 contains an isomorphic
copy of one from ℬ?

The generalized continuum hypothesis (GCH) implies that the smallest possibility for |ℬ|
is 2ℵ1 . A set of size ℵ1 has, under GCH, 2ℵ1 linear orderings no two of which have un-
countable subsets that are isomorphic.

In contrast to this, Justin Moore [11] proved that it is consistent (relative to large cardinals)
and it follows from the proper forcing axiom that there is such a basis ℬ with just five
members:

– ω1 (the shortest well-ordering of cardinality ℵ1),

– ω∗
1 (ω1 with the ordering reversed),

– an ℵ1-sized subset of ℝ,

– a Countryman line C , and

– C∗, the same Countryman line with the reverse order.

This result is optimal, since no two of these five orderings have uncountable subsets that
are isomorphic.



118 A. Blass

2 Additive Gruppen von Folgen ganzer Zahlen

This paper [19] contains some (still) surprising 2 properties of the additive group

� = ℤ
ℕ

of all sequences of integers and its monotone subgroups. “Monotone” means that, if a
sequence 〈xn〉 is in the subgroup M and if 〈yn〉 ∈ � satisfies |yn| ≤ max{1, |xk| : k ≤ n}
for all n, then 〈yn〉 ∈ M . The smallest monotone subgroup is the group ℬ of bounded
sequences; the largest is � itself.

Specker proved that, for any monotone M other than ℬ, every homomorphism h : M → ℤ

factors through a finite subproduct. That is, h has the form

h(〈xn〉) =
r∑

n=0

anxn

for some finite r and some integers a0, . . . , ar .

It follows that M is not free. Indeed, since M has the cardinality 𝔠 of the continuum, any
free basis for it would have the same cardinality, and then any of the 2𝔠 functions from the
basis to ℤ would extend (uniquely) to a homomorphism. But Specker’s result shows that
M admits only countably many homomorphisms to ℤ, two exponentials lower than the 2𝔠

that it would have if it were free.

Specker also showed that the continuum hypothesis (CH) implies that ℬ is free. Later,
Nöbeling [14] removed the need for CH. Nevertheless, the proof makes essential use of the
axiom of choice, and in fact all “well-behaved” homomorphisms ℬ → ℤ factor through
a finite subproduct [2]. Here the “well-behaved” homomorphisms include all those that
are Borel with respect to the topology that ℬ inherits as a subspace of the product � of
discrete spaces ℤ. And it is consistent, in the absence of the axiom of choice, that all
homomorphisms are well-behaved.

All monotone subgroups of � have cardinality 𝔠. Could smaller subgroups (still of infinite
rank) have the same property that all homomorphisms to ℤ factor through a finite subprod-
uct? Countable subgroups of � are free, so they cannot have this factorization property,
but, in the absence of CH, one can ask about subgroups of cardinality strictly between ℵ0
and 𝔠. Katsuya Eda [5] showed that the answer is independent of ZFC plus not-CH. I sub-
sequently showed [1] that, if κ is the cardinality of a subgroup of � with this factorization
property, then there are κ sets in ℝ of Lebesgue measure zero whose union does not have
Lebesgue measure zero. (The underlying combinatorics, which connects the factorization
property to Lebesgue measure, has appeared again in other contexts.)

Generalizing a notion introduced by Łoś, call an abelian group G slender for a monotone
subgroup M of � if every homomorphism M → G factors through a finite subproduct.
So Specker’s theorem says that ℤ is slender for all M except ℬ.

2. A few years ago, I gave a colloquium talk in my department, and mentioned, in the abstract circulated
beforehand, that � is not free. Two of my colleagues independently came to my office to ask whether I really
meant that, since it seemed clear to them that � must be free.
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There are 2𝔠 monotone subgroups of �. How many notions of slenderness do they pro-
duce? Göbel and Wald [9] showed that there are at leat four. Assuming Martin’s Axiom,
they got the maximum possible number, 2𝔠. But it is consistent [3] that there are only four.

There are combinatorial methods, called �-invariants, for measuring how far an abelian
group is from being free; see for example [6]. By this measure, monotone subgroups of �

other than ℬ are as far from free as possible.

3 Zur Axiomatik der Mengenlehre
(Fundierungs- und Auswahlaxiom)

Part II of this paper [20] contains a reformulation and abstraction of the Fraenkel-Mostow-
ski method of permutation models for the negation of the axiom of choice. Fraenkel [7]
and Mostowski [12] worked with a version of set theory that allows atoms (also called Ur-
elemente), which are not sets but can be members of sets. A universe V of sets built over a
family A of atoms admits automorphisms induced by arbitrary permutations of A. Permu-
tation models M are composed of the atoms together with some, not all, of the sets that can
be formed from them; sets are allowed into M if they (and their elements, elements of el-
ements, etc.) are sufficiently symmetric, i.e., invariant under enough automorphisms of V .

Specker introduced two modifications of the Fraenkel-Mostowski method. The lesser of
the two was to replace the atoms, which are not sets, with sets of a special sort, namely
ones that satisfy a = {a}. The effect is to reinstate the axiom of extensionality, “things
with the same members are equal,” which had been violated by the atoms. The price for
this reinstatement is that one loses the axiom of foundation, which prohibits, among other
things, sets having themselves as members. The net effect is a gain, since extensionality
plays a far larger role in mathematics than foundation.

The more important of Specker’s modifications concerns the notion of invariance under
“enough” automorphisms. In the work of Fraenkel and Mostowski, “enough automor-
phisms” meant “all automorphisms induced by permutations that fix a small family of
atoms and preserve some additional structure on the atoms”; the notion of “small fam-
ily” and the relevant additional structure were chosen, in each particular construction, to
accomplish the desired technical results, for example verifying some weak version of the
axiom of choice in M . Specker saw that both smallness and extra structure can be more
naturally expressed in terms of the group of permutations and a filter of subgroups. He
made this group-theoretic viewpoint the center of his development of the theory, thereby
achieving the proper, natural level of abstraction for this work.

Later, when Cohen [4] proved the independence of the axiom of choice from full Zermelo-
Fraenkel set theory (including the axioms of extensionality and foundation), the group-
theoretic viewpoint was still used, but, instead of permuting atoms (or self-member sets),
the group acted by automorphisms on the forcing conditions used in constructing and de-
scribing Cohen’s models. The group-theoretic viewpoint made evident an analogy between
Cohen’s constructions and the earlier Fraenkel-Mostowski-Specker permutation models.

It turns out, however, that there is more than an analogy here; Cohen’s models can be
constructed directly, by forcing over permutation models, with no additional use of sym-
metry. This approach is presented in [22]. Here is an example: Start with the basic Fraenkel
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model (as in [7] or [10, Chapter 4]) with its set A of “atoms” a = {a}. Adjoin, in the usual
way, an A-indexed family of Cohen-generic reals, by forcing with finite partial functions
A × ω ⇀ 2. The well-founded part of the resulting forcing extension is the basic Cohen
model (as in [4] or [10, Chapter 5]).

In Part III of the same paper [20], Specker analyzed various properties of ordinals that
become possible when the axiom of choice is not assumed. He showed that some of these
situations imply that the first uncountable ordinal ω1 is, in Gödel’s constructible universe,
an inaccessible cardinal. In particular, he deduced this conclusion from the hypothesis that
there is no function assigning, to each countable limit ordinal α, an ω-sequence of smaller
ordinals converging to α. (Every countable limit ordinal α admits such an ω-sequence; the
issue is whether there is a function choosing one such ω-sequence for each α.) This hy-
pothesis therefore has consistency strength at least that of an inaccessible cardinal, strictly
greater than ZF alone.

It turns out that this hypothesis holds in some of the most important models of ZF with-
out choice, including Solovay’s model [17] for “all sets of reals are Lebesgue measurable”
(which has exactly the consistency strength of an inaccessible cardinal) and models of My-
cielski’s axiom of determinacy [13] (which has considerably higher consistency strength).
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[16] Wacław Sierpiński, “Sur un problème de la théorie des relations,” Ann. Sc. Norm. Super. Pisa, Ser. 2 2
(1933) 285–287.

[17] Robert Solovay, “A model of set theory in which every set of reals is Lebesgue measurable,” Ann. Math.,
Ser. 2 92 (1970) 1–56.

[18] Ernst Specker, “Sur un problème de Sikorski,” Colloquium Math. 2 (1949) 9–12.

[19] Ernst Specker, “Additive Gruppen von Folgen ganzer Zahlen,” Portugaliae Math. 9 (1950) 131–140.

[20] Ernst Specker, “Zur Axiomatik der Mengenlehre (Fundierungs- und Auswahlaxiom),” Z. Math. Logik
Grundlagen Math. 3 (1957) 173–210.
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[22] Petr Vopěnka and Petr Hájek, The Theory of Semisets, Academia (1972).

Andreas Blass
Mathematics Department
University of Michigan
Ann Arbor, MI 48109–1043, USA
e-mail: ablass@umich.edu


