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Maurer. After a postdoc at McGill University, Montréal, he was an Assistant professor
at University of Waterloo, Ontario, and Université de Montréal, Québec, before he
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Introduction

In 1960, Ernst Specker showed, in an article written in German and entitled “Die Logik
nicht gleichzeitig entscheidbarer Aussagen” (The logic of not simultaneously decidable
propositions) that it is impossible to predict the behavior of a quantum-mechanical system
under all possible measurements in a consistent and context-independent way. Later, John
Bell showed a similar result based on the joint behavior of entangled pairs of particles, and
on the assumption of locality instead of non-contextuality. We discuss the relevance and
applications of these results. Moreover, we prove a rigorous link between the two lines of
reasoning or, equivalently, between the assumptions of non-contextuality – which appears
hard to translate to an actual experiment –, versus locality – which can be quite easily
guaranteed in practice by a spacelike separation of the measurement events.

.

Ernst Speckers Ideen haben nicht nur innerhalb der Mathematik Generationen von For-
schern inspiriert, sondern auch in den angrenzenden Gebieten wichtige Spuren hinter-
lassen. Renato Renner und Stefan Wolf illustrieren dies in der vorliegenden Arbeit am
Beispiel der Quantenmechanik respektive der Quanteninformationstheorie.
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1 Quantum Logic
When the second author joined ETH to study mathematics, Ernst Specker had already re-
tired, but was still very present at the departement. One reason were numerous stories 1

about the charismatic and inspiring teacher, another was the logic seminar which contin-
ued to be held each year, and that had its origin back in the days of Paul Bernays. Since this
seminar, which Ernst Specker held together with Hans Läuchli, was worthwhile attending
just for Specker’s constitutive introductory hours, a small community had gathered around
it, and those people attended the event far beyond what was required by their studies’ cur-
ricula. The seminar’s topic changed every year, and the edition on “quantum logic” was
the second author’s first contact with the topic – the fascination for which, initiated by
Specker, has never left him ever since. In his introductory address to the seminar, Specker
told, in his very own narrative style, a tale about a wise teacher of an Assyrian prophets’
school who was concerned with ruling the contest about the charms of his daughter, for
whom he wanted to find a worthy future husband. The prophet showed to every candidate
three boxes, each of which either contained a diamond or was empty. The task to be solved,
namely to point out two boxes with similar content, seemed doable, but turned out impos-
sible: Whatever pair of boxes was opened, one of them contained a diamond whereas the
other was found empty. What was going on?

The tale is taken from Specker’s work “Die Logik nicht gleichzeitig entscheidbarer Aus-
sagen” (The logic of not simultaneously decidable propositions) [26], in which he dis-
cusses a modification of classical propositional logic by dropping the standard assump-
tion that each couple of propositions can both always be assigned a definite truth value.
Specker’s starting point was his teacher Gonseth’s quote “La logique est d’abord une sci-
ence naturelle” – “Logic is, first of all, a natural science” [17], in some sense a paradig-
matic predecessor of Landauer’s “Information is Physical” [22], three decades later. In
this spirit, the logic of quantum physics has been studied first by Birkhoff and von Neu-
mann [6].

Specker asks: “Kann die Beschreibung eines quantenmechanischen Systems durch Einfüh-
rung von zusätzlichen – fiktiven – Aussagen so erweitert werden, dass im erweiterten Be-
reich die klassische Aussagenlogik gilt?” – “Is it possible to extend the description of a
quantum-mechanical system by adding additional – fictional – propositions in such a way
that in the resulting domain, classical propositional logic governs?”

The question is answered to the negative: “Ein elementargeometrisches Argument zeigt,
dass [. . . ] über ein quantenmechanisches System (von Ausnahmefällen abgesehen) keine
konsistenten Prophezeiungen möglich sind.” – “An elementary-geometric argument shows
that in general, no consistent prophecies are possible concerning the behavior of a quan-
tum-mechanical system.”

In Specker’s own words, every prophet can be led into some sort of contradiction, not when
compared to an actual experiment, but due to unavoidable inner contradictions among his
set of prophecies for alternative setups. There is still a possible way out, namely if the
prophet is able to predict how the system is measured, i.e., which of the alternatives really
occurs. We discuss this point further in Section 4.3.

1. It has been reported that whenever someone had forgotten his or her key, yet claimed to have an office
space in ETH’s “math floor” HG G, Ernst Specker would ask that person “Was gibt i i ?”.
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2 Hidden Variables?

In 1935, Einstein, Podolsky, and Rosen (in the following, EPR for short) [12] have chal-
lenged quantum theory by stating that it might only be an incomplete description of nature.
More specifically, the authors considered the joint behavior of certain entangled states; the
argument has later been simplified by Bohm and Aharanov [7], who considered a max-
imally entangled state of two two-dimensional quantum systems. The reasoning of EPR
was that since given the outcome of a measurement of one of the two parts of the entangled
system, the outcome of a corresponding measurement of the other part can be predicted
with certainty – and, therefore, must be seen as an “element of reality” –, this outcome
must be represented in any complete theory, regardless of whether the measurement is
actually carried out or not. In other words, quantum mechanics is incomplete and must
be augmented by hidden variables predetermining the outcomes of all possible measure-
ments that can be carried out. It should be noted that EPR’s claim was, physically speaking,
most natural: How else should one explain a correlation in the behavior of possibly distant
particles that had been prepared together before they got separated?

Nevertheless, the program suggested by EPR turned out to be infeasible. Indeed, the
decades that followed brought a series of results which complement each other up to a
quite coherent picture letting it appear rather unnatural (to say the least) that the outcome
of quantum measurements be predetermined before they are actually carried out. In this
picture, Specker’s result is a landmark.

Von Neumann [28] showed that no hidden-variable model was possible for which the
expectation values of arbitrary observables depend linearly on the latter. The linearity as-
sumption was droppedwith respect to non-commuting observables by Jauch and Piron [20]
as well as by Gleason [16]; that result prepared the ground for the work of Specker
which is, in some sense, a consequence thereof. Specker’s [26] as well as Kochen and
Specker’s [21] results imply that no non-contextual predetermination of all measurement
outcomes is possible: Whether a quantum system “replies” by yes or no to a given “ques-
tion” would depend on what other questions are asked.

In 1964, a breakthrough was achieved by John Bell [5], who showed that the joint behav-
ior of entangled states, such as the singlet, was beyond the explanatory power of shared
randomness if the measurement outcome was to be determined locally from the hidden
variables and the choice of the measurement to be performed. These “spooky actions at
a distance” have since been experimentally verified with respect to different settings and
assumptions, e.g., [1], [27].

In Section 3, we prove a direct connection between the no-hidden-variable results based on
non-contextuality on the one hand and on locality on the other. Our findings have already
appeared in part in [24] 2.

2. The authors had proposed, at the time, to Ernst Specker to be a co-author of the work. Specker politely
declined and added, smiling: “Das tut mir Leid für Ihre Erdös-Zahlen.”



Ernst Specker and the Hidden Variables 125

3 Linking the Kochen-Specker Theorem to Non-Locality

3.1 The Kochen-Specker Theorem: Weak and Strong Kochen-Specker Sets

Specker’s [26] and Kochen and Specker’s [21] results on the impossibility of hidden-
variable models imply that any attempt of determining a definite measurement outcome
for any possible measurement basis must necessarily be contextual: It is impossible to as-
sign values 0 and 1 to all unit vectors in the three-dimensional Hilbert space ℋ = C3 in
such a way that every orthonormal basis contains exactly one vector with value 1 – this
vector would be the corresponding measurement outcome. Interestingly, this impossibility
even holds with respect to a finite set of vectors.

Definition 1. A Kochen-Specker set (KS set for short) in ℋ = Cn is a set S ⊆ ℋ of unit
vectors such that there exists no function f : S → {0, 1} with the property that if b ⊆ S
is an orthonormal basis of ℋ, then ∑

u∈b

f (u) = 1

holds.

Theorem 1. [26], [21] There exists a finite KS set S ⊆ ℋ = Cn for n ≥ 3. There exists
no KS set S ⊆ ℋ = C2 (in other words, the set S of unit vectors in ℋ = C2 is not a KS
set).

The impossibility of consistently predicting – or predetermining – the outcomes of a set
of alternative measurements can in fact be derived from a slightly weaker notion than the
one of a KS set – namely from a set of vectors on which any “prediction function” f
inevitably assigns the value 1 to two orthogonal vectors.

Definition 2. A weak Kochen-Specker set (weak KS set for short) in ℋ = Cn is a set
S ⊆ ℋ of unit vectors such that for every function f : S → {0, 1} satisfying that for
every orthonormal basis b ⊆ S of ℋ ∑

u∈b

f (u) = 1

holds, there exist vectors u, v ∈ S with 〈u|v〉 = 0 and f (u) = f (v) = 1.

Clearly, every KS set is a weak KS set (since no function f with the mentioned property
exists at all); on the other hand, every weak set S can be extended to a KS set S′ with
O(|S|2n) additional vectors. In particular, there exists a KS set in some Hilbert space ℋ if
and only if there exists a weak KS set in ℋ.

Lemma 2. Let ℋ = Cn and let S ⊆ ℋ be a finite weak KS set. Then there exists a finite
KS set S′, S ⊆ S′ ⊆ ℋ with

|S′ \ S| ≤ |S|(|S| − 1)

2
(n − 2) . (1)
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Proof. Every pair of orthonormal vectors in S can be extended to an orthonormal basis
by adding n − 2 vectors. Hence, there exists a set S′ ⊇ S satisfying inequality (1) and
such that every pair of orthogonal vectors in S is contained in some orthonormal basis
b ⊆ S′. Assume there exists a function f : S′ → {0, 1} with

∑
u∈b f (u) = 1 for every

orthonormal basis b ⊆ S′. Clearly, the restriction of f to S has the same property, hence
there exist u, v ∈ S with 〈u|v〉 = 0 and f (u) = f (v) = 1. For the basis b′ ⊆ S′ containing
u and v we have

∑
w∈b′ f (w) ≥ f (u) + f (v) = 2. Therefore, no prediction function f

can exist for S′, which must thus be a KS set. □

3.2 Non-Locality, Bell’s Inequality, and Pseudo-Telepathy

A different approach to showing the impossibility of hidden-variable explanations for the
behavior of quantum systems was taken by Bell [5]. According to quantum mechanics,
two two-dimensional systems, called quantum bits or Qbits for short, can – even when
physically separated – be in a joint state which cannot be completely described by giving
the states of the two Qbits separately; such a state is called entangled. An example is

|�+〉 := 1√
2
(|00〉 + |11〉) .

Bell showed that the joint behavior with respect to different measurements on the two
subsystems of this state cannot be explained by shared classical information under the
assumption that no communication is allowed between the two parts of the system. More
precisely, Bell derived certain inequalities – the Bell inequalities – that are satisfied for all
systems the behavior of which do have a classical explanation; he then showed that they
are violated by the behavior of the EPR state |�+〉. This non-locality, even though it does
not allow the parties controlling the distant systems for (instant) message transmission,
implies that no local hidden-variable theory can explain their behavior.
“Pseudo-telepathy” [8] is a deterministic version of non-local behavior: Two distant par-
ties unable to communicate but sharing a certain entangled quantum state – for instance n
copies of the state |�+〉 – can satisfy some deterministic condition on their mutual input-
output behavior with certainty, whereas parties without shared entanglement – even when
having agreed on a “classical” strategy beforehand – cannot.

Definition 3. Let ℋ = ℋ1 ⊗ ℋ2, and let |�〉 ∈ ℋ be a pure state. A pseudo-telepathy
game with respect to |�〉 (|�〉-PT game for short) is a pair (B1, B2), where Bi is a set of
orthonormal bases of ℋi , such that the following condition holds. Let g be the function
defined on B1 × B2 such that g((b1, b2)) is the set of pairs (u1, u2) ∈ b1 × b2 satisfying

〈�|u1, u2〉 �= 0 ;
the latter condition means that the measurement outcome (u1, u2) has non-zero probability
if |�〉 is measured with respect to the basis b1×b2 ofℋ. Then we must have that, for every
pair of functions (s1, s2) – a classical strategy –, where si is defined on Bi and si (bi ) ∈ bi

holds for all bi ∈ Bi , there must exist particular bases b1 ∈ B1 and b2 ∈ B2 such that

(s1(b1), s2(b2)) �∈ g((b1, b2))

holds.
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3.3 Pseudo-Telepathy from any Weak Kochen-Specker Set

We show a close connection between PT games and the Kochen-Specker theorem. More
precisely, we show that every weak KS set leads to a PT game (Section 3.3), and that every
PT game with respect to a maximally entangled state leads to a KS set in some Hilbert
space (Section 3.4). Two consequences are that there exists a PT game between two parties
sharing only one maximally entangled Qtrit pair, i.e., the state (|00〉 + |11〉 + |22〉)/√3,
but that no such game exists (at least with respect to von Neumann measurements) when
only an EPR state |�+〉 is shared.

Definition 4. Let ℋ = Cn , and let c = {|0〉, |1〉, . . . , |n − 1〉} and b = {u0, u1, . . . , un−1}
be orthonormal bases of ℋ. Then the complex conjugate basis b of b (with respect to c) is
b = {u0, u1, . . . , un−1} with ui = U |i〉, where U is the unitary operator on ℋ satisfying
b = Uc, i.e., ui = U |i〉 for i = 0, 1, . . . , n − 1. For a set B of bases, we denote by B the
set of complex conjugate bases.

Theorem 3. Let ℋ = Cn, S ⊆ ℋ, c = {|0〉, |1〉, . . . , |n − 1〉} and b = {u0, u1, . . . , un−1}
be orthonormal bases of ℋ, and let

B = {b ⊆ S | b is an orthonormal basis of ℋ} .

Consider the state

|�〉 := 1√
n
(|00〉 + |11〉 + · · · + |n − 1, n − 1〉) ∈ ℋ ⊗ ℋ .

If S is a weak KS set in ℋ, then (B, B) is a |�〉-PT game.

Proof. Let s1 and s2 be two functions such that for all b ∈ B and b′ ∈ B , we have s1(b) ∈ b
and s2(b′) ∈ b′. Let now for u ∈ S

f (u) :=
{

1 if there exists u ∈ b ∈ B such that s1(b) = u ,
0 otherwise .

Clearly, we have for every b ∈ B that ∑
u∈b

f (u) ≥ 1

holds. Since S is a weak KS set, there exist u, u′ ∈ S with 〈u|u′〉 = 0 and f (u) = f (u′) =
1. Let b, b′ ∈ B such that s1(b) = u, s1(b′) = u′. Clearly, we have either s2(b′) �= u′ or
s2(b′) = u′. We show that the condition for a PT game is satisfied in both cases.

Assume first s2(b′) := u′′ �= u′. Then u′ and u′′, which both belong to b′, are orthogonal
vectors and we get

〈�|u′, u′′〉 = 1√
n

∑
i

〈i |u′〉〈i |u′′〉 = 1√
n
〈u′|u′′〉 = 0 ;
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hence,
(s1(b

′), s2(b′)) = (u′, u′′) �∈ g((b′, b′))
holds since the probability of this output is 0.

If we have, on the other hand, s2(b′) = u′, we can conclude

(s1(b), s2(b′)) = (u, u′) �∈ g((b, b′))

in a similar way since u and u′ are orthogonal. □

A consequence of Theorems 1 and 3 is that there exists a PT game between parties sharing
only one Qtrit pair.

Corollary 4. There exists a ((|00〉 + |11〉 + |22〉)/√3)-PT game.

In [21], a KS set in ℋ = C3 with 117 elements is given. It has been shown later that there
exist much smaller such sets; for instance, there exists a KS set with 33 vectors belonging
to 16 different orthonormal bases of ℋ. According to Theorem 3, this leads to a PT game
where each party gets one of 16 possible inputs – one of the 16 bases; the condition for
“winning the game” is that identical bases must be answered by identical vectors, whereas
bases that have a vector in common must be answered by the overlapping vector by both
parties, or not by this vector by both parties.

3.4 Kochen-Specker Sets from Pseudo-Telepathy Games

Theorem 5. Let ℋ = Cn, c = {|0〉, |1〉, . . . , |n − 1〉} be an orthonormal basis of ℋ, let
B1 and B2 be two sets of orthonormal bases of ℋ, and let

|�〉 = 1√
n
(|00〉 + |11〉 + · · · + |n − 1, n − 1〉) ∈ ℋ ⊗ ℋ .

Let finally S be the set
S :=

⋃
b∈B1

b ∪
⋃

b∈B2

b ⊆ ℋ .

If (B1, B2) is a |�〉-PT game, then S is a weak KS set in ℋ.

Proof. Let f : S → {0, 1} be a function such that for all orthonormal bases b ⊆ S, we
have

∑
u∈b f (u) = 1.

Let, for any b1 ∈ B1 and b2 ∈ B2, s1(b1) and s2(b2) be the elements u1 and u2 of b1 and
b2, respectively, satisfying f (u1) = f (u2) = 1. Because (B1, B2) is a |�〉-PT game, there
exist particular bases b1 ∈ B1 and b2 ∈ B2 with

(s1(b1), s2(b2)) �∈ g((b1, b2)) .

Let ui = si (bi). Now, (u1, u2) �∈ g((b1, b2)) implies that this output pair occurs with
probability 0, i.e.,

0 = 〈�|u1, u2〉 = 1√
n

∑
i

〈i |u1〉〈i |u2〉 = 1√
n

〈u1|u2〉 .
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We conclude that there exist two orthogonal vectors u1 and u2 in S with f (u1) = f (u2) =
1, and this finishes the proof. □

Theorem 5 implies that any PT game between parties sharing a state of the given form (for
instance, k copies of |�+〉) leads to a weak KS set in the corresponding Hilbert space (e.g.,
ℋ = C2k

). It is, however, not clear how such a set can be derived from a PT game using a
state of a different form.

Corollary 6, which is an immediate consequence of Theorem 5 and Lemma 2, implies that
given the existence of a PT game, the corresponding Hilbert space contains a KS set (of
limited size).

Corollary 6. Let ℋ = Cn, c = {|0〉, |1〉, . . . , |n − 1〉} be an orthonormal basis of ℋ, let
B1 and B2 be two sets of orthonormal bases of ℋ, and let

|�〉 = 1√
n
(|00〉 + |11〉 + · · · + |n − 1, n − 1〉) ∈ ℋ ⊗ ℋ .

Let S be the set
S :=

⋃
b∈B1

b ∪
⋃

b∈B2

b ⊆ ℋ .

If (B1, B2) is a |�〉-PT game, then there exists a KS set S′ with S ⊆ S′ ⊆ ℋ and such that

|S′ \ S| ≤ |B1| · |B2| · n3

holds.

Proof. According to Theorem 5, S is a weak KS set; more precisely, there exist, for every
“KS function” f , u ∈ b ∈ B1 and v ∈ b′ ∈ B2 with 〈u|v〉 and f (u) = f (v) = 1. As in
Lemma 2, S can be extended by at most∣∣∣∣∣∣

⋃
b∈B1

b

∣∣∣∣∣∣ ·
∣∣∣∣∣∣

⋃
b′∈B2

b′
∣∣∣∣∣∣ · (n − 2) ≤ |B1|n · |B2|n · (n − 2)

vectors to a set S′ such that every orthogonal pair u, v with u ∈ b ∈ B1 and v ∈ b′ ∈ B2 is
in an orthonormal basis b ⊆ S′ of ℋ. Hence, S′ is a KS set. □

Corollary 7 is a consequence of Corollary 6 and Theorem 1 and suggests – together with
Corollary 4 – that the minimal quantum primitive allowing for a PT game is a maximally
entangled Qtrit pair. (Note that Corollary 7 does not imply that the behavior of |�+〉 is
local: This state does violate various Bell inequalities.)

Corollary 7. There exists no ((|00〉 + |11〉)/√2)-PT game.

Theorem 5 can be used to construct new KS sets from PT games. In Example 1, this is done
for a game proposed by Brassard, Cleve, and Tapp [8] (see also [14]), which uses 4 EPR
pairs as a resource. The resulting KS set inℋ = C16 is highly symmetric (but rather large).
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Example 1. In [8], the following PT game was introduced. For n ∈ N, N = 2n , let

B1 = B2 =
⎧⎨
⎩

⎧⎨
⎩ 1√

N

∑
i∈{0,1}n

(−1)i· j⊕z(i)|i〉
∣∣∣∣∣∣ j ∈ {0, 1}n

⎫⎬
⎭

∣∣∣∣∣∣ z : {0, 1}n → {0, 1}
⎫⎬
⎭ ;

these bases arise when the Hadamard transform is applied to the bases {±|i〉} of ℋ = CN .
In [14], it was shown that for

|�〉 = |�+〉⊗n = 1√
N

∑
i∈{0,1}n

|i, i〉 ,

and for N ≥ 16, this is a |�〉-PT game. Hence, Theorem 5 implies that in this case, the set

S =
⋃

b∈B1

b ∪
⋃

b∈B2

b =
⎧⎨
⎩ 1√

N

∑
i∈{0,1}n

(−1)z(i)|i〉
∣∣∣∣∣∣ z : {0, 1}n → {0, 1}

⎫⎬
⎭

is a weak KS set. It is in fact a KS set, since every pair of orthogonal vectors can be
extended to an orthonormal basis of ℋ with vectors in S: The idea is, given two orthogonal
vectors u and v corresponding to N-bit strings z1 and z2, respectively, with dH (z1, z2) =
N/2 – which holds because u and v are orthogonal –, to choose N − 2 additional strings
zi , i = 3, . . . , N , such that the strings z1 ⊕ zi , i = 1, . . . , N , are the code words of a dual
Hamming code. Hence, for instance, the set

S =
{

1

4

15∑
i=0

±|i〉
}

is a – highly symmetric – KS set in ℋ = C16 with 216 elements (corresponding to the
different choices of the 16 signs).

4 What Do the Non-Local Correlations Mean?
The cause and consequences of non-local correlations have been a mystery and challenging
problem up to this day; in addition, the phenomenon has turned out to be a potentially
precious resource for information processing, as well as a criterion for the comparison
and discussion of different interpretations of quantum theory.

4.1 Explanations

When faced with the problem of explaining an observed correlation between two events,
we are used to choosing one of the two possibilities: Either a common cause explains the
correlation, or an influence from one event to the other establishes it. In various experi-
ments, non-local correlations between spacelike separated measurement events have been
observed; this means that both our standard explanations of correlations are ruled out in
this case. It has, therefore, been suggested that they might arise from some kind of “hidden
influence” at finite yet superluminal speed (in some preferred reference frame). However,
in a series of results [25], [11], [2], such an explanation has been ruled out as well, since
it is self-contradictory in multi-partite scenarios.
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4.2 Applications

Now, if it is indeed the case that the classical information representing the outcome of a
quantum measurement arises spontaneously, and that pieces of such information gener-
ated in remote locations can be perfectly correlated, then it is natural to try applying the
phenomenon, e.g., for cryptography: If the laboratories of two parties Alice and Bob are
secured, and measurements of previously exchanged entangled systems are carried out,
then the generated information cannot be known to any outside party, potentially control-
ling the entire environment.

This paradigm was pioneered in [13], realized in principle in [3], further developed in,
e.g., [19], [18], and led to a variant of quantum key distribution where no trust in the
manufacturer of the devices is required, nor into the fact that the adversary is limited by
quantum physics – as long as superluminal signaling is excluded. The confidentiality of the
generated keys is directly related to the impossibility of predicting the future, in principle,
as Specker had put it in his seminal work: Pieces of information clearly are secret if they
cannot be predicted before some given point in time, and as long as they are not leaked
after that.

4.3 Lessons

In related work by the first author, it has been shown that quantum physics is complete
if it is correct [10] under the assumption that measurement settings can be chosen freely.
In [9], it was shown that this latter assumption can be relaxed to certain only partially
free choices. This result supports the “all-or-nothing nature” of true randomness, already
exposed in Specker’s original article: “In einem gewissen Sinne gehören aber auch die
scholastischen Spekulationen über die Infuturabilien hieher, das heisst die Frage, ob sich
die göttliche Allwissenheit auch auf Ereignisse erstrecke, die eingetreten wären, falls etwas
geschehen wäre, was nicht geschehen ist.” – “In some sense, our statements also deal
with the scholastic speculations about the infuturabili, i.e., the question whether divine
omniscience also covers what would have happened if something had happened that has
not happened.”

Indeed, Specker’s as well as Bell’s findings indicate that the answer to this is no. Let us
put it more explicitly, in Specker’s terms: Either a prophet can predict which measurement
will be carried out by an experimenter, together with its outcome, or he cannot predict the
measurement choice, in which case, according to Specker’s argument, he cannot consis-
tently predict the outcome either. In this sense, even divine omniscience can, in principle,
not be consistently extended to conditioning on alternatives mutually excluding each other.
Roughly speaking, either we fail to be able to make spontaneous choices, or elementary
particles must have that ability, too.

In a nutshell, this leaves us with only the extremal options of no true free randomness at all,
or omnipresent randomness. It is unclear whether it is possible in principle to decide which
is the case. However, non-local correlations are real and might serve as an illustrative
criterion in the discussion and evaluation of the different options.
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In an inherently random theory, such as the standard (Copenhagen) interpretation of quan-
tum physics, the correlations are surprising and mysterious coı̈ncidences without any
“story to tell within space-time” (Nicolas Gisin).

A deterministic hidden-variable theory, e.g., Bohmian mechanics, must be such that the
outcomes of one measurement potentially also depend not only on the hidden variables
of another particle but also of the apparatus, ultimately even the experimenter, of that
other particle. Bell disqualified such a thing as being “even more mind-boggling” than
spontaneous correlations of spacelike separated random events [4].

In theories where no collapse and no randomness occurs, and where decoherence explains
macroscopicity and classicality of information, it remains unexplained why the emerging
“pseudo-classical” information perceived by us or observed in the laboratory shows the
strange correlations. The mystery cannot be escaped unless the notion of classical infor-
mation, or logic for that matter, including our assumption of one unique objective reality,
is put into question entirely. Yet then, how would we explain our subjective perceptions
of classical outcomes and of their being correlated, and how would we be to reason about
them in the first place?

5 Epilogue

The authors thank Janos Makowsky and Norbert Hungerbühler for their kind invitation
to contribute to this special issue. In 2010, the second author discussed the relevance and
implications of Specker’s work in the field at a workshop organized by Janos Makowsky
on the occasion of Ernst Specker’s 90th birthday. After the talk, Ernst Specker came up
to the speaker and said “Sie haben schon recht, dies ist dasjenige Resultat, welches mich
am längsten überleben wird.” – “You are right, this is the result of mine that I will be
remembered for the longest time.”
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