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Abstract

What is easy and when does it become hard to find a solution of a problem? We give
a sharp answer to this question for various generalizations of the well-known maximum
satisfiability problem. For several maximumψ-satisfiability problems we explicitly deter-
mine algebraic numbers τψ (0 < τψ < 1), which separate NP-complete from polynomial
problems. The fraction τψ of the clauses of a ψ-formula can be satisfied in polynomial
time, while the set of ψ-formulas which have an assignment satisfying the fraction τ ′
(τ ′ > τψ , τ ′ rational) of the clauses is NP-complete.
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Karl Lieberherr schrieb seine Doktorarbeit 1977 unter der Leitung von Erwin Enge-
ler. Ernst Specker war Korreferent. Der Zusammenarbeit mit Ernst Specker entsprang
eine erste Arbeit Complexity of Partial Satisfaction im Journal of the ACM, 1981.
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on wurde ursprünglich beim SIAM Journal on Computing eingereicht und mit einem
enthusiastischen Gutachten quitiert, schliesslich aber doch nicht angenommen, weil
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1 Introduction

We continue our study of the (generalized) satisfiability problem [Lieberherr/Specker
(1981), Lieberherr (1982)].

One often recurring theme in computer science is the following: Given an algorithmic
problem, find an algorithm which is optimal with respect to a certain measure. The moti-
vation for looking for such algorithms is that the algorithm designer has a guarantee that
his algorithm is best-possible in a certain precise sense. Some typical measures are time,
space, comparisons, A·T 2 etc. For many measures it is hard to prove that a given algorithm
is optimal.

We have analyzed the algorithmic problem of finding good approximate solutions for gen-
eralized satisfiability problems. The measure we used to compare algorithms is the quality
of the approximations which they find. In [Lieberherr (1982)] we describe an efficient al-
gorithm MAXMEAN* which is best possible with respect to our measure for a large class
of problems. In this paper we provide a framework for the analysis of MAXMEAN* and
we apply our method to several special cases.

We investigate combinatorial optimization problems of the following form: Given a se-
quence of constraints, find an assignment which satisfies as many as possible. This con-
straint satisfaction problem appears in many applications like time table scheduling, laying
out graphs in a grid, decoding of linear codes, minimizing PLA’s etc.

Maximization problems of this type are naturally formulated as maximum ψ-satisfiability
problems [Schaefer (1978)]. ψ is a finite set of logical relations R1, . . . , Rm which are
used to express the constraints. A ψ-formula S with n variables is a finite sequence of
clauses each of the form Ri (x1, . . . , xri ). ri is the rank of Ri and x1, . . . , xri are a subset
of the variables of S. The maximum ψ-satisfiability problem consists of finding, for any
ψ-formula S, an assignment to the n variables satisfying the maximum number of the
clauses.

Let τψ be the fraction of the clauses which can be satisfied efficiently in any ψ-formula S.
It is shown in [Lieberherr (1982)] that the following algorithm MAXMEAN* guarantees
to satisfy the fraction τψ in time O(|S|| clauses(S)|), where | clauses(S)| is the number of
clauses in S.

Note added in 2012

The paper re-interprets CNFs as polynomials over the real numbers. There is a simpler
access to this re-interpretation based on biased coins which is only hinted at in the paper.
Consider a CNF s with n variables and a coin with bias b which is used to generate random
assignments for the variables of s. What is the expected fraction of satisfied clauses for bias
b? It is a polynomial p(s, b) in b of at most degree n that can easily be computed from the
clauses in s using linearity of expectation. Because p(s, b) is a (weighted) average there
must be an assignment satisfying at least the fraction p(s, b). Using derandomization, we
can find a polynomial-time deterministic algorithm that finds an assignment satisfying at
least the fraction p(s, b). We then find the maximum bias bmax in [0, 1] for which p(s, b)
is maximum. The above easily generalizes to generalized maximum satisfiability problems
and provides a simpler way to derive the appmean function and algorithm MAXMEAN*.
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Algorithm MAXMEAN*

Input: A ψ-formula S with n variables.

Output: An assignment satisfying at least the fraction τψ of the clauses.

max assignment := 0 ;

loop

compute k such that

max
0≤k′≤n

meank′ (S) = meank(S)

{meank(S) is the average fraction of satisfied clauses in S among all assignments
having exactly k ones. meank(S) is a polynomial in k which can be efficiently com-
puted }
for all variables x ∈ S do

if meank−1(Sx=1) > meank(Sx=0)

then J [x] := 1; k := k − 1; S := Sx=1

else J [x] := 0; S := Sx=0

{mean−1(S) = mean0(S), meann+1(S) = meann(S)}
h := SATISFIED(S, J ); { SATISFIED(S, J ) is the number of satisfied clauses in S
under assignment J }
if h > max assignment then max assignment := h else exit ;

rename all variables in S which are assigned 1 by J ;

end ;

Already after one iteration of the outermost loop of MAXMEAN* the fraction τψ of the
clauses is satisfied by assignment J [Lieberherr (1982)].

From the definition of τψ it follows that MAXMEAN* is a polynomial (1 − τψ)-ap-
proximate algorithm for the maximumψ-satisfiability problem, i.e., MAXMEAN* comes
within 1 − τψ of the optimal assignment. It is an open problem whether there are poly-
nomial ε′-approximate algorithms for ε′ < 1 − τψ . However it is shown in [Lieberherr
(1982)] that it is NP-complete to decide whether more than the fraction τψ of the clauses
can be satisfied in a given ψ-formula.

In the following we outline the contents of this paper. In [Lieberherr (1982)] we reduce
the determination of τψ for a given ψ to a discrete minimax problem. We show, that the
discrete minimax problem can be reduced to a continuous minimax problem which is
considerably easier to solve (Theorem 2.1).

We determine τψ for several maximumψ-satisfiability problems, each requiring a different
proof technique. In Theorem 3.1 we analyze special systems of linear inequalities, i.e., a
special case of the (0, 1)-integer programming problem.

Theorem 3.1 Let R j be the relation of rank r which holds, if exactly j of the r vari-
ables are assigned one. Let ψ = {R0, . . . , Rr }. Then algorithm MAXMEAN* satisfies
the fraction 1

r+1 of the clauses in a ψ-formula S in time O(|S|| clauses(S)|). The set of
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ψ-formulas having an assignment satisfying the fraction τ ′ > 1
r+1 of the clauses is NP-

complete (τ ′ rational).

The proof first uses the above reduction (Theorem 2.1) and continues with an averaging
trick which simplifies a part of the problem to the computation of an integral. The integral
is solved by partial integration. The mean value theorem from calculus and some further
minimax manipulations complete the proof.

The following theorem analyzes subclasses of the regular satisfiability problem.

Theorem 4.1 Let F(p, q) be the class of propositional formulas in conjunctive normal
form which contain in each clause at least p positive or at least q negative literals (p, q >
1). Let α be the solution of (1 − x)p = xq in (0, 1) and let τp,q = 1 − αq . Then algorithm
MAXMEAN* satisfies the fraction τp,q of the clauses in any formula ∈ F(p, q) in time
O(|S|| clauses(S)|). The set of formulas ∈ F(p, q) which have an assignment satisfying
the fraction τ ′ > τp,q of the clauses is NP-complete (τ ′ rational).

The proof is involved and is decomposed into 3 simplifying reductions.

In the last part of the paper we partially solve a problem which was left open in [Lieber-
herr/Specker (1981)]. We give an efficient algorithm which guarantees to satisfy 2/3 of the
clauses in a 3-satisfiable conjunctive normal form.

2 Reduction to a continuous min-max-problem

In the following we sketch how the computation of τψ can be simplified to a discrete
minimax problem involving polynomials (a more detailed explanation is in [Lieberherr
(1982)]).

τψ is by definition the fraction of the clauses which can be satisfied in all ψ-formulas. First
we consider ψ-formulas with at most n variables and let τn,ψ be the fraction of clauses
which can be satisfied in all such formulas.

For computing τn,ψ we determine the worst-case formulas, i.e., the formulas where the
smallest fraction of the clauses can be satisfied (by the optimal assignment) among all ψ-
formulas with n variables. It is easy to prove that these formulas are symmetric, i.e., they
are invariant under permutations of the variables, up to a permutation of the clauses.

Fortunately the worst-case formulas have a nice structure and therefore it is easy to com-
pute an optimal assignment for them. For computing an optimal assignment for a symmet-
ric formula we only have to compute the maximum of a polynomial. This polynomial can
be derived by elementary combinatorial analysis.

In this section we prove a theorem which simplifies the computation of τψ to the solution
of a continuous minimax problem which does not involve a limit operation. Let ψ =
{R1, R2, . . . , Rm} be a finite set of relations and let S be a symmetric ψ-formula in which
the fraction tRi of the clauses contains clauses involving relation Ri . In order to compute
τn,ψ we have to find the worst assignment to the parameters tR1 . . . tRm which makes the
optimal fraction of satisfiable clauses as small as possible.
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It follows from the above discussion that (assuming that
m∑

i=1
tRi = 1, tRi ≥ 0 (1 ≤ i ≤ m))

τψ = lim
n→∞ τn,ψ

τn,ψ = min
tRi

rational

1≤i≤m

max
0≤k≤n
integer

m∑
i=1

tRi · SATn
k (Ri )

SATn
k (R) =

r(R)∑
s=0

qs(R)

r(R)s

(k)s(n − k)r(R)−s

(n)r(R)

where

tR is the fraction of clauses containing relation R

r(R) is the rank of R

qs(R) is the number of satisfying rows in the truth table of R which contains s ones

(α)β
α!

β!(α−β)! , where α, β are positive integers, α ≥ β.

Let

τ ′
ψ = min

tRi
real

1≤i≤m

max
0≤x≤1

real

m∑
i=1

tRi · SATx(Ri ),

m∑
i=1

tRi = 1, tRi ≥ 0

appSATx(R) =
r(R)∑
s=0

qs(R)x
s(1 − x)r(R)−s .

Theorem 2.1 τψ = τ ′
ψ .

τψ is defined as the solution of a discrete minimax problem since the maximization is over
integers. However τ ′

ψ is expressed as the solution of a continuous minimax problem since
both the minimization and maximization are over reals. Furthermore the formula for τ ′

ψ

does not involve a limit operation. Therefore the definition of τ ′
ψ is easier to evaluate.

We need the following definitions for the proof of Theorem 2.1.

Let S be a ψ-formula containing relation Ri (1 ≤ i ≤ m) for the fraction tRi of the clauses.
Let 	t = (tR1, . . . , tRm ).

meann
k (	t) =

m∑
i=1

tRi SATn
k (Ri ).

Let

appmeanx (	t) =
m∑

i=1

tRi appSATx(Ri ).

Lemma 2.2 Let ψ be a finite set of m relations and let 	t = (tR1 , . . . , tRm ) be a vector
whose components add up to 1.
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(1) lim
j→∞ mean j ·n

j ·k (	t) = appmeank/n(	t)
(2) For all real x (0 ≤ x ≤ 1):

lim
n→∞ meann


nx�(	t) = appmeanx(	t).

Proof. (1) We have to show that

lim
j→∞

( jk)s( j (n − k)r−s

( jn)r
=

(
k

n

)s (
1 − k

n

)r−s

.

This follows from

lim
j→∞

( jk)( jk − 1) . . . ( jk − s + 1)

( jn)( jn − 1) . . . ( jn − s + 1)
=

(
k

n

)s

and

lim
j→∞

( j (n − k))( j (n − k)− 1) . . . ( j (n − k)− r + s − 1)

( jn − s)( jn − s − 1) . . . ( jn − r + 1)
=

(
1 − k

n

)r−s

.

(2) Follows from

lim
n→∞


nx�
n

= x

and (1).

Proof of Theorem 2.1. We have to show that for any 	t
A = lim

n→∞ max
0≤k≤n
integer

meann
k (	t) =

B = max
0≤x≤1

real

appmeanx(	t).

Let xmax be the maximal x in the definition of B . For each n, define k(n) = 
xmax�. Then
by Lemma 2.2(2)

A ≥ lim
n→∞ meann

k(n)(	t) = appmeanxmax
(	t) = B.

Hence A ≥ B .

To show that A ≤ B , define the sequence k(n), n = 1, 2, . . ., such that meann
k(n)(	t) =

max
0≤k≤n

meann
k (	t). Let k ′(n′), n′ ranging over an increasing subsequence of the natural num-

bers, be an infinite subsequence of k(n) such that

lim
n′→∞

k ′(n′)
n′ = x

for some real x . Then by Lemma 2.2(2)

A = lim
n′→∞

meann′
k′(n′)(	t) = lim

n→∞ meann

xn�(	t) = appmeanx(	t) ≤ B.
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3 Special (0, 1)-Integer Programming

In this section we analyze special systems of linear equalities. The computation of the
constant τψ for this case requires new methods. One reason is that here we are dealing
with sets of relations which contain r relations (r a variable) and not just two relations.

Let R j be the relation of rank r which holds if exactly j of the r variables are true.

Theorem 3.1 Let ψ = {R0, R1, . . . , Rr }. Then

(i) In any ψ-formula the fraction 1
r+1 of the clauses can be satisfied.

(ii) There is a polynomial algorithm MAXMEAN* which finds an assignment satisfying
at least the fraction 1

r+1 of the clauses in a ψ-formula.

(iii) For any rational τ ′ > 1
r+1 the set of ψ-formulas having an assignment satisfying at

least the fraction τ ′ of the clauses is NP-complete.

Proof of 3.1(i). Since qs(R j ) = 0 if s �= j and q j (R j ) = (r
j

)
we have

appmeanx (S) =
r∑

j=0

t j

(
r

j

)
x j (1 − x)r− j .

By Theorem 1 it is sufficient to show that

1

r + 1
= min

t j real
0≤ j≤r

max
0≤x≤1

real

appmeanx (	t),
r∑

j=0

t j = 1.

ψ has the property that it is not necessary to choose the maximal x in the above formula in
order to compute τψ = 1

r+1 . Therefore we perform an averaging process in the following
lemma.

Lemma 3.2 ∫ 1

0
x j (1 − x)r− j dx = 1(r

j

)
(r + 1)

.

Proof. Let

f j,r =
∫ 1

0
x j (1 − x)r− j dx .

We show the lemma by induction.

f0,r =
∫ 1

0
(1 − x)rdx = − 1

r + 1
(1 − x)r+1

∣∣∣1
0

= 1

r + 1
.
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For the induction step we use partial integration

u = 1

j + 1
x j+1

u′ = x j

v = (1 − x)r− j

v′ = −(r − j)(1 − x)r− j−1

f j,r =
∫ 1

0
u′vdx = uv

∣∣∣1
0
−

∫ 1

0
uv′dx = r − j

j + 1
f j+1,r .

Hence,

f j+1,r = j + 1

r − j
f j,r (0 ≤ j < r)

and therefore inductively

f j+1,r = j + 1

r − j
f j,r = j + 1

r − j

j · ( j − 1) · · · 1
r(r − 1) · · · (r − j + 1)

· 1

r + 1
= 1( r

j+1

) .

Lemma 3.3 Let

	t = (t0, t1, . . . , tr )

( r∑
j=0

t j = 1

)

and let

appmeanx(	t) =
r∑

j=0

t j

(
r

j

)
x j (1 − x)r− j .

Then there is x0 (0 ≤ x0 ≤ 1) such that

appmeanx0
(	t) = 1

r + 1
.

Proof. Consider

∫ 1

0
appmeanx (	t)dx =

r∑
j=0

t j

(
r

j

) ∫ 1

0
x j (1 − x)r− j dx

=
r∑

j=0

t j

(
r

j

)
1(r

j

)
(r + 1)

= 1

r + 1
.

The claim follows from the mean value theorem of calculus.

Lemma 3.4

min
	t

max
0≤x≤1

appmeanx (	t) = max
	t

min
0≤x≤1

appmeanx(	t) = 1

r + 1
.
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Proof. Let

	b =
(

1

r + 1
,

1

r + 1
, . . . ,

1

r + 1

)
r + 1 dimensional.

Then

appmeanx(
	b) = 1

r + 1

r∑
j=0

(
r

j

)
x j (1 − x)r− j = 1

r + 1
.

Therefore

min
	t

max
0≤x≤1

appmeanx (	t) ≤ 1

r + 1
,

since for 	t = 	b only the fraction 1
r+1 can be satisfied (independent of x).

Also

max
	t

min
x

appmeanx(	t) ≥ 1

r + 1
,

since for 	t = 	b the minimal x satisfies the fraction 1
r+1 . On the other hand for any 	t there

is an x0 such that

appmeanx0
(	t) = 1

r + 1
.

Therefore

min
	t

max
0≤x≤1

appmeanx (	t) ≥ 1

r + 1
,

and

max
	t

min
0≤x≤1

appmeanx (	t) ≤ 1

r + 1
.

Proof of 3.1(ii) and 3.1(iii). Algorithm MAXMEAN* guarantees to satisfy the fraction
1

r+1 in polynomial time. It follows from a general result in [Schaefer (1978)] that the ψ-
satisfiability problem is NP-complete (for the ψ under discussion). Then (iii) follows from
Theorem 1.2 in [Lieberherr (1982)].

4 Satisfiability

Let F(p, q) be the following class of propositional formulas in conjunctive normal form:
Each clause in a formula in F(p, q) contains at least p positive or q negative literals
(p, q ≥ 1).

Let α be the solution of (1 − x)p = xq in (0, 1) and let τp,q = 1 − αq .

Theorem 4.1

(i) In any formula in F(p, q) the fraction τp,q of the clauses can be satisfied.

(ii) There is a polynomial algorithm MAXMEAN* which finds an assignment satisfying
at least the fraction τp,q of the clauses in a formula in F(p, q).

(iii) For any rational τ ′ > τp,q the set of formulas in F(p, q) having an assignment
satisfying at least the fraction τ ′ of the clauses is NP-complete.
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This theorem and its proof extend the results and methods given in [Lieberherr/Specker
(1981)]. The proof of Theorem 4.1(i) is given by a sequence of simplifying reductions.
Each reduction is presented as a Proposition j . The corresponding Lemma j claims that
Proposition j implies the previous proposition (in the first step: Theorem 4.1(i)).
Theorem 4.1(ii) is a special case of a general result proven in [Lieberherr (1981)]. The
proof of Theorem 4.1(iii) is based on a result by [Schaefer (1978)] and the technique given
in [Lieberherr/Specker (1981)].

Simplifying Reductions

Proposition 4.2 For all integers n > min(p, q) and for all positive integers t1, t2 there is
an integer k (0 ≤ k ≤ n) such that gEXACT(n, k, t1, t2) =

t1
(n)p

(n − k)p + t2
(n)q

(k)q

t1 + t2
≤ 1 − τp,q

Lemma 4.2 Proposition 4.2 =⇒ Theorem 4.1(i).

Proof. Using the techniques given in [Lieberherr/Specker (1981)] it is easy to show that
the class F(p, q) can be reduced to F ′(p, q) = {formulas having only clauses containing
either exactly p positive literals or exactly q negative literals}. Furthermore, it is sufficient
to consider only symmetric formulas in F ′(p, q).
Let S be a symmetric formula in F ′(p, q) which contains t1 clauses of the form A1 ∨
A2 ∨ · · · ∨ Ap and t2 clauses of the form ¬A1 ∨ ¬A2 ∨ · · · ∨ ¬Aq . Then the fraction of
unsatisfied clauses if k variables are set to 1 is, by elementary counting methods, given by
gEXACT(n, k, t1, t2).
Note that gEXACT(n, k, t1, t2) is the expected fraction of unsatisfied clauses among all
assignments which set k variables to 1. It is denoted by mean′

k(S) for a given formula S.
First we give an outline of the proof for Proposition 4.2.
Outline of the proof. Let x = k

n and substitute r s for any expression of the form (r)s in
gEXACT(n, k, t1, t2). The resulting expression for the fraction of unsatisfied clauses is

gAPPROX(x, t1, t2) = t1(1 − x)p + t2xq

t1 + t2
.

Since for all positive integers r, k, n (k ≤ n)

(k)r
(n)r

≤
(

k

n

)r

,

the inequality

gEXACT(n, k, t1, t2) ≤ gAPPROX

(
k

n
, t1, t2

)

holds. Therefore it is sufficient to show that for all n and all positive integers t1, t2 there is
an integer k such that

gAPPROX

(
k

n
, t1, t2

)
≤ 1 − τp,q .

W.l.o.g. we set t2 = 1, since gAPPROX is homogeneous in t1, t2.
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Take the derivative of gAPPROX with respect to x , set it to zero and solve for t1:

t1 = q

p

xq−1

(1 − x)p−1
.

Substitute for t1 in gAPPROX:

gAPP(x) = q · xq−1(1 − x)p + p · xq(1 − x)p−1

q · xq−1 + p(1 − x)p−1
.

gAPP has the following intuitive meaning. Consider a formula S in F ′(p, q) with n vari-
ables and define kmin by

min
0≤k≤n

mean′
k(S) = mean′

kmin
(S).

In any such a formula S at most the fraction gAPP(
kmin
n ) of the clauses can be unsatisfied.

This holds since the second derivative of gAPPROX with respect to x is positive if p ≥ 1 or
q ≥ 1 and t1 �= 0 and t2 �= 0. Therefore it is sufficient to show that for all positive integers
and all real x (0 ≤ x ≤ 1)

gAPP(x) ≤ 1 − τp,q .

Compute the extremal points of gAPP with respect to x in (0, 1). There is only one which
is given by the solution of (1 − x)p = xq .

Substituting xq for (1 − x)p in gEXACT yields

gEXACT = 1 − xq .

Therefore the fraction τp,q = 1 − αq can be satisfied in any formula in F ′(p, q).
The following simple heuristic method, which was also observed by John Scranton, gives
the correct result.

Choose x such that the fraction of satisfied clauses is independent of t1, t2. The resulting
condition for x is

(1 − x)p = xq .

For such an x , the fraction of satisfied clauses is independent (in the limit) of the formula
we consider and it is τp,q .

Now we continue with the proof of Proposition 4.2.

Proposition 4.3 For all integers n > min(p, q) and all positive integers t1, t2 there is an
integer k (0 ≤ k ≤ n) such that

gAPPROX(x, t1, t2) = t1(1 − x)p + t2xq

t1 + t2
≤ 1 − τp,q .

Lemma 4.3 Proposition 4.3 =⇒ Proposition 4.2.
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Proof. Note that for all positive integers r, k, n (k ≤ n) since

(k)r
(n)r

≤
(

k

n

)r

(
1 − 1

k

) (
1 − 2

k

)
. . .

(
1 − r − 1

k

)
≤

(
1 − 1

n

) (
1 − 2

n

)
. . .

(
1 − r − 1

n

)
.

If we let x = k
n and replace (n−k)p

(n)p
by (1 − x)p and (k)q

(n)q
by xq we increase gEXACT.

Therefore gEXACT ≤ gAPPROX which proves Lemma 4.3.

Proposition 4.4 For all real x (0 ≤ x ≤ 1)

gAPP = xq−1(1 − x)p−1(q(1 − x)+ px)

q · xq−1 + p(1 − x)p−1
≤ αq .

Lemma 4.4 Proposition 4.4 =⇒ Proposition 4.3.

Proof. W.l.o.g. we set t2 = 1 since gAPPROX is homogeneous in t1, t2. Take the derivative
of gAPPROX with respect to x , set it to zero and solve for t1:

t1 = q

p

xq−1

(1 − x)p−1

If we substitute for t1 in gAPPROX we get gAPP. Note that the second derivative of gAPPROX
with respect to x is

t1 · p · (p − 1)(1 − x)p−2 + t2 · q · (q − 1)xq−2,

which is positive for any x (0 < x < 1), if p > 1 and t1 �= 0 or q > 1 and t2 �= 0.

Proof of Proposition 4.4. We show first that the derivative of gAPP(x) is zero in (0, 1) iff
x satisfies (1 − x)p = xq .

Let A = xq , B = (1 − x)p . Then

gAPP(x) = A′B − AB ′

A′ − B ′ .

The numerator of the derivative of gAPP(x) is

(A′′B ′ − A′B ′′)(A − B).

The first factor

A′′B ′ − A′B ′′ = −pq(q − 1)xq−2(1 − x)p−1 − qp(p − 1)xq−1(1 − x)p−2

= xq−2(1 − x)p−2(−(q − 1)(1 − x)− (p − 1)x)

has no zeros in (0, 1).
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Since (1 − x)p = xq has only one solution α in (0, 1) the rational function gAPP(x) has
one extremal point in (0, 1) with value gAPP(α) = αq . Since gAPP(0) = gAPP(1) = 0 the
function gAPP(x) is maximal for x = α.

The proof of Proposition 4.4 uses differentiation. We give now a different proof which
does not use differentiation and which provides further insight into the problem.

Proposition 4.5 For all real x, β (0 ≤ x, β ≤ 1)

g2(x, β) = xq [(1 − x)p(px − qx + q)+ (1 − β)pq(x − 1)] − (1 − x)pβq · p · x ≤ 0.

Lemma 4.5 Proposition 4.5 =⇒ Proposition 4.4.

Proof. Multiply both sides of gAPP(x) ≤ αq by the denominator of gAPP(x) and shift all
terms to the left of the inequality sign. The resulting inequality is g2(x, β) ≤ 0 if we make
liberal use of (1 − α)p = αq (a crucial point) and if we substitute β for α.

Proof of Proposition 4.5. So far a proof of Proposition 4.5 was obtained only for special
cases.

I) p = 1, q ≥ 1. Note that

g2(x, β) = (x − β)2
q−1∑
i=1

xq−i−1(i − q)β i−1.

Hence g2(x, β) is non-positive for 0 ≤ x, β ≤ 1.

Example: (p = 1)
g2(x, β) is proportional to (the deleted factor has a positive sign)
−(x − β)2 for q = 2.
−(x − β)2(2x + β) for q = 3.
−(x − β)2(3x2 + 2xα + α2) for q = 3.

II) p = 2. g2(x, β) is proportional to (the deleted factor has a positive sign)
(x − β)2(x(x − 4)+ 2β(x − 1)) for q = 3.
(x − β)2(x2(x − 3)+ 2βx(x − 1)+ β2(x − 1)) for q = 4.
(x − β)2(x3(3x − 8)+ 6βx2(x − 1)+ 4β2x(x − 1)+ 2β3(x − l)) for q = 5.

Unfortunately this technique does not generalize for p ≥ 3 but it is conjectured that Propo-
sition 4.5 holds in general.

The formulas obtained by the alternate proof method have interesting applications. The
following theorem allows us to predict which fraction of the clauses can be satisfied in
every formula if the index of the maximal meank(S) is fixed.

Theorem 4.6 Let S be a formula in F ′(1, q) (q > 1) for which

max
0≤k≤n

meank(S) = mean0(S).
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Then assignment JALL 0, which assigns false to all variables satisfies all clauses. In gen-
eral, if max

0≤k≤n
meank(S) = meank′ (S) then the assignment which assigns true to k′ vari-

ables satisfies at least the fraction

1 − αq −

(
k′
n − α

)2 q−1∑
i=1
(i − q)αi−1

(
k′
n

)q−i−1

q ·
(

k′
n

)q−1 + 1

of the clauses.

Proof. Consider gAPP(x)− αq for p = 1 (after multiplying with q · xq−i + 1):

qxq−1(1 − x)+ xq − αq · (q · xq−1 + 1) = (x − α)2
q−1∑
i=1

xq−i−1(i − q)αi−1.

Let

h(x) =
(x − α)2

q−1∑
i=1

xq−i−1(i − q)αi−1

q · xq−1 + 1
.

Now,
h(0) = α2(−1 · αq−2) = −αq .

Proof of Theorem 4.1(ii). Algorithm MAXMEAN* guarantees to satisfy the fraction τp,q

in polynomial time.

Proof of Theorem 4.1(iii). The fact that the satisfiability problem for formulas in F(p, q)
is NP-complete follows from a general result of [Schaefer (1978)]. Then the proof can be
adapted from [Lieberherr/Specker (1981)].

Extensions

The technique used to prove Theorem 4.1(i) is suitable to determine τψ , for other sets ψ
which contain only two relations. The fraction of satisfied clauses in a symmetric formula
which contains t1 clauses with the first relation and t2 clauses with the second relation is
given by (in approximated form)

h1(x, t1, t2) = t1R1(x)+ t2R2(x)

t1 + t2
,

where R1 and R2 are polynomials which depend on the two relations.

W.l.o.g. t2 = 1. If we take the derivative of h1 with respect to x and solve for t1 we get

t1 = −R′
2(x)

R′
1(x)

.
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Substituting in h1 we get

h2(x) = R′
1(x)R2(x)− R1(x)R′

2(x)

R′
1(x)− R′

2(x)
.

The numerator of the derivative of h2(x) is given by

(R1(x)− R2(x))(R
′′
1 (x)R

′
2(x)− R′

1(x)R
′′
2 (x)).

If the second factor has no zeros in (0, 1) then the fraction R1(α) can always be satisfied,
where α is the solution of R1(x) = R2(x) in (0, 1) which is the global minimum of h2.

5 Partial Solution of the 3-Satisfiability Problem
In [Lieberherr/Specker (1981)] the following problem was left open. A formula S of the
propositional calculus in conjunctive normal form (cnf) is said to be 3-satisfiable, if any
triple of clauses is satisfiable. We find a lower bound on the fraction τ3 of the clauses
which can always be satisfied in a 3-satisfiable formula by showing in the following that
τ3 > 2/3. Unfortunately we have not been able to determine τ3 exactly. The motivation for
studying k-satisfiable formulas is the relationship to polynomial approximation schemes
for satisfiability [Lieberherr/Specker (1981), Huang/Lieberherr (1981)].

The problem with 3-satisfiable formulas is that they are not closed under symmetrization.
If we take a 3-satisfiable formula S and symmetrize it with the full permutation group then
the symmetrized formula is in general not 3-satisfiable.

To show that τ3 > 2/3 we construct a class RED1 of formulas so that

1. RED1 contains all 3-satisfiable formulas (but some are not 3-satisfiable)

2. in any formula in RED1 at least the fraction 2/3 of the clauses can be satisfied.

Consider any 3-satisfiable formula S. Without loss of generality we assume that clauses
of length 1 only contain positive literals (this can be enforced by renamings). Now we
partition the variables into two classes. The first class contains only variables which occur
in clauses of length 1. The second class contains all other variables. A clause is said to be
type T q

i j if its j variables are in class q and i of them are positive. A clause is said to be of

type T qr
i1 j1i2 j2

if it contains j1 variables of class q and j2 variables of class r and if i1 of the
j1 variables are positive and i2 of the j2 variabIes are positive.

Definition RED1 is the following subset of cnfs: The variables are partitioned into 2
classes (A-variables and B-variables) and only the following clause types occur:

T 1
11, T

1
03, T

12
01 11, T

12
01 01, T

2
02, T

2
12, T

2
22.

This definition is of interest since for proving that τ3 > 2/3 it is sufficient to minimize
among the formulas in RED1.

Theorem 5.1

(i) In any 3-satisfiable cnf at least the fraction 2/3 of the clauses can be satisfied.

(ii) There is a polynomial algorithm to find such an assignment.
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Proposition 5.2 In any cnf in RED1 at least the fraction 2/3 of the clauses can be satisfied.

Lemma 5.2 Proposition 5.2 =⇒ Theorem 5.1(i).

Proof. Any 3-satisfiable cnf is easily reduced to a formula in RED1 by deleting literals.
Deleting literals makes a formula harder for satisfying many clauses.

Definition Let RED2 be the subset of cnfs of RED1 which do not contain clauses with
types T 2

02, T
2
12 and T 2

22.

Proposition 5.3 In any cnf in RED2 at least the fraction 2/3 of the clauses can be satisfied.

Lemma 5.3 Proposition 5.3 =⇒ Proposition 5.2.

Proof. In a cnf containing clauses of exactly length 2 at least the fraction 3/4 of the
clauses can be satisfied (a random assignment satisfies 3/4). Therefore deleting clauses of
the above three types does not make it easier to satisfy many clauses.

We prove now Proposition 5.3 by a sequence of further reductions. Let S be a formula
in RED2 which contains t1 clauses of type T 1

11, t2 clauses of type T 12
01 11, t3 clauses of

type T 1
03 and t4 clauses of type T 12

01 11. The worst-case formulas (regarding the fraction
of satisfiable clauses) in RED2 are those which are symmetric in the A-variables and B-
variables. Among those formulas the formulas with t2 = t4 are hardest. In a formula in
RED2 with t2 = t4 the fraction

1 −
t1
n (n − k)+ t2

n k + t3
(n3)

(k
3

)
t1 + 2t2 + t3

of the clauses are satisfied if k of the n A-variables are set to 1.

Therefore, we have to show

Proposition 5.4 For all integers n and for all positive integers t1, t2, t3 there is an integer
k (0 ≤ k ≤ n) such that

t1
n (n − k)+ t2

n k + t3
(n)3

(k)3

t1 + 2t2 + t3
≤ 1

3
.

Lemma 5.4 Proposition 5.4 =⇒ Proposition 5.3.

Proof. Given above.

Proposition 5.5 For all integers n and for all positive integers t1, t2, t3 there is an integer
k (0 ≤ k ≤ n) such that

w1 =
t1
n (n − k)+ t2

n k + t3
n3 k3

t1 + 2t2 + t3
≤ 1

3
.

Lemma 5.5 Proposition 5.5 =⇒ Proposition 5.4.

Proof. Observe that (k)r
(n)r

≤ kr

nr if k ≤ n.
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Proposition 5.6 For all x (0 ≤ x ≤ 1) and all positive integers t3

w2 = 1 − 2t3x3

3 + t3(1 − 6x2)
≤ 1

3
.

Lemma 5.6 Proposition 5.6 =⇒ Proposition 5.5.

Proof. W.l.o.g. let t1 = 1 and substitute x for k
n in w1. Take the derivative of w1 with

respect to x , set it to zero and solve for t2:

t2 = 1 − 3t3x
2.

By substituting 1 − 3t3x2 for t2 in w1 we get w2.

Proposition 5.6 is easily proven directly by case analysis.

Added 2012

The topic of local versus global satisfaction continues to generate interesting papers. The
most surprising result was the paper by Luca Trevisan [Trevisan (2004)] which showed
that the global satisfaction ratio only approaches 3/4. Links to several other related papers
are on the page [Lieberherr (2012)].
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