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1 Introduction

For p a prime and k an integer, vp(k) denotes the highest exponent v such that pv | k. (Here
a | b means a divides b.) For example, v2(k) = 0 if and only if k is odd, and v2(40) = 3.

.

Die Potenzsummen Sn(m) = 1n + 2n + · · · + mn haben immer wieder Anlass zu
mathematischer Forschung gegeben. Die Formel S1(m) = m(m + 1)/2 lässt sich bis
in die griechische Antike nachweisen. Fermat zählte die Aufgabe, Formeln für die
Potenzsummen zu finden, gar zu den schönsten Problemen der Mathematik. Der Ul-
mer Rechenmeister Johannes Faulhaber legte 1631 den Grundstein zur heute nach ihm
benannten Formel für Potenzsummen. Carl Ludwig Siegel kommentierte gegenüber
André Weil den Moment, als erstmals der einfachste Fall der Faulhaberschen Formel
entdeckt wurde, mit den Worten “Es gefiel dem lieben Gott”. In der vorliegenden Ar-
beit bestimmen die Autoren die höchste Potenz von 2, welche Sn(m) teilt und ver-
allgemeinern somit Tamás Lengyels Formel die den Spezialfall abdeckt, wo m eine
Zweierpotenz ist. Als Anwendung resultiert ein neuer Beweis von Pieter Morees Re-
sultat über die Lösungen der verallgemeinerten Erdős-Moser-Gleichung.
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For any power sum

Sn(m) :=
m∑

j=1

j n = 1n + 2n + · · · + mn (m > 0, n > 0),

we determine v2(Sn(m)). As motivation, we first give a classical extension of the fact that
S1(m) = m(m + 1)/2, a formula known to the ancient Greeks [1, Ch. 1] and famously [4]
derived by Gauss at age seven to calculate the sum

1 + 2 + · · · + 99 + 100 = (1 + 100) + (2 + 99) + · · · + (50 + 51) = 5050.

Proposition 1. If n > 0 is odd and m > 0, then m(m + 1)/2 divides Sn(m).

The proof is a modification of Lengyel’s arguments in [5] and [6].

Proof of Proposition 1. Case 1: both n and m odd. Since m is odd we may group the terms
of Sn(m) as follows, and as n is also odd we see by expanding the binomial that

Sn(m) = mn +
(m−1)/2∑

j=1

(
j n + (m − j)n

) =⇒ m | Sn(m).

Similarly, grouping the terms in another way shows that

Sn(m) = 1

2

m∑
j=1

(
j n + ((m + 1) − j)n

) =⇒ m + 1

2
| Sn(m).

As m and m + 1 are relatively prime, it follows that m(m + 1)/2 | Sn(m).

Case 2: n odd and m even. Here

Sn(m) =
m/2∑
j=1

(
j n + ((m + 1) − j)n

) =⇒ (m + 1) | Sn(m)

and

Sn(m) = 1

2

m∑
j=0

(
j n + (m − j)n

) =⇒ m

2
| Sn(m).

Thus m(m + 1)/2 | Sn(m) in this case, too. □

Here is a paraphrase of Lengyel’s comments [5] on Proposition 1:

We note that Faulhaber had already known in 1631 (cf. [2]) that Sn(m) can
be expressed as a polynomial in S1(m) and S2(m), although with fractional
coefficients. In fact, Sn(m)/(2m +1) or Sn(m) can be written as a polynomial
in m(m + 1) or (m(m + 1))2, if n is even or n ≥ 3 is odd, respectively.
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Proposition 1 implies that if n is odd, then

vp(Sn(m)) ≥ vp(m(m + 1)/2),

for any prime p. When p = 2, Theorem 1 shows that the inequality is strict for odd n > 1.

Theorem 1. Given any positive integers m and n, the following divisibility formula holds:

v2(Sn(m)) =
{

v2(m(m + 1)/2) if n = 1 or n is even,

2v2(m(m + 1)/2) if n ≥ 3 is odd.
(1)

The elementary proof given in Section 3 uses a lemma proved by induction.

In the special case where m is a power of 2, formula (1) is due to Lengyel [5, Theo-
rem 1]. His complicated proof, which uses Stirling numbers of the second kind and von
Staudt’s theorem on Bernoulli numbers, is designed to be generalized. Indeed, for m a
power of an odd prime p, Lengyel proves results [5, Theorems 3, 4, 5] towards a formula
for vp(Sn(m)).

In the next section, we apply formula (1) to a certain Diophantine equation.

2 Equations of Erdős-Moser type
As an application of Theorem 1, we give a simple proof of a special case of a result due to
Moree. Before stating it, we discuss a conjecture made by Erdős and Moser [11] around
1953.

Conjecture 1 (Erdős-Moser). The only solution of the Diophantine equation

1n + 2n + · · · + (m − 1)n = mn

is the trivial solution 1 + 2 = 3.

Moser proved, among many other things, that Conjecture 1 is true for odd exponents n.
(An alternate proof is given in [7, Corollary 1].) In 1987 Schinzel showed that in any
solution, m is odd [10, p. 800]. For surveys of results on the problem, see [3, Section D7],
[8], [9], and [10].

In 1996 Moree generalized Conjecture 1.

Conjecture 2 (Moree). The only solution of the generalized Erdős-Moser Diophantine
equation

1n + 2n + · · · + (m − 1)n = amn (2)

is the trivial solution 1 + 2 + · · · + 2a = a(2a + 1).

Actually, Moree [8, p. 290] conjectured that equation (2) has no integer solution with
n > 1. The equivalence to Conjecture 2 follows from the formula

1 + 2 + · · · + k = 1

2
k(k + 1) (3)

with k = m − 1.
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Generalizing Moser’s result on Conjecture 1, Moree [8, Proposition 3] proved that Con-
jecture 2 is true for odd exponents n. He also proved a generalization of Schinzel’s result.

Proposition 2 (Moree). If equation (2) holds, then m is odd.

In fact, Moree [8, Proposition 9] (see also [9]) showed more generally that if (2) holds and
a prime p divides m, then p − 1 does not divide n. (The case p = 2 is Proposition 2.)
His proof uses a congruence which he says [8, p. 283] can be derived from either the von
Staudt-Clausen theorem, the theory of finite differences, or the theory of primitive roots.

We apply Theorem 1 to give an elementary proof of Proposition 2.

Proof of Proposition 2. If n = 1, then (2) and (3) show that m = 2a + 1 is odd.

If n > 1 and m is even, set d := v2(m) = v2(m(m + 1)). Theorem 1 implies v2(Sn(m)) ≤
2(d−1), and (2) yields Sn(m) = Sn(m−1)+mn = (a+1)mn. But then nd ≤ v2(Sn(m)) ≤
2(d − 1), contradicting n > 1. Hence m is odd. □

3 Proof of Theorem 1

The heart of the proof of the divisibility formula is the following lemma.

Lemma 1. Given any positive integers n, d, and q with q odd, we have

v2(Sn(2dq)) =
{

d − 1 if n = 1 or n is even,

2(d − 1) if n ≥ 3 is odd.
(4)

Proof. We induct on d . Since the power sum for Sn(2q) has exactly q odd terms, we have
v2(Sn(2q)) = 0, and so (4) holds for d = 1. By (3) with k = 2dq , it also holds for all
d ≥ 1 when n = 1. Now assume inductively that (4) is true for fixed d ≥ 1.

Given a positive integer a, we can write the power sum Sn(2a) as

Sn(2a) = an +
a∑

j=1

(
(a − j)n + (a + j)n

) = an + 2
a∑

j=1

�n/2�∑
i=0

(
n

2i

)
an−2i j2i

= an + 2
�n/2�∑
i=0

(
n

2i

)
an−2i S2i (a).

If n ≥ 2 is even, we extract the last term of the summation, set a = 2dq , and write the
result as

Sn(2d+1q) = 2ndqn + 2d Sn(2dq)

2d−1 + 22d+1
(n−2)/2∑

i=0

(
n

2i

)
2d(n−2i−2)qn−2i S2i (2dq).

By the induction hypothesis, the fraction is actually an odd integer. Since nd > d , we
conclude that v2(Sn(2d+1q)) = d , as desired.
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Similarly, if n ≥ 3 is odd, then

Sn(2d+1q)=2ndqn + 22dnq
Sn−1(2dq)

2d−1
+ 23d+1

(n−3)/2∑
i=0

(
n

2i

)
2d(n−2i−3)qn−2i S2i (2dq).

Again by induction, the fraction is an odd integer. Since nd > 2d , and n and q are odd,
we see that v2(Sn(2d+1q)) = 2d , as required. This completes the proof of the lemma. □

Proof of Theorem 1. When m is even, write m = 2dq , where d ≥ 1 and q is odd. Then
v2(m(m + 1)/2) = d − 1, and (4) implies (1).
If m is odd, set m + 1 = 2dq , with d ≥ 1 and q odd. Again we have v2(m(m + 1)/2) =
d − 1. From (3) with k = m we get v2(S1(m)) = d − 1, so that (1) holds for n = 1. If
n > 1, then nd > 2(d − 1) ≥ d − 1, and so (4) and the relations

Sn(m) = Sn(m + 1) − (m + 1)n ≡ Sn(m + 1) (mod 2nd)

imply v2(Sn(m)) = v2(Sn(m + 1)) and, hence, (1). This proves the theorem. □
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