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Let ABC be a triangle, and let a, b, c, A, B , C denote its side lengths and angles in the
standard order. The letters A, B , C denote the angles, their measures, and the vertices, and
the symbol AB stands for the line segment AB as well as its length and the line determined
by it. When there is any ambiguity, we will talk about the point A, the line AB , the length
of the line segment AB , etc. The length of the line segment AB is also denoted by |AB|.
For any P �= B in the plane of ABC such that BP is not parallel to AC , we let BBP denote
the cevian from B through P , and we think of BP as undefined otherwise. Similarly, we
define CCP to be the cevian from C through P if P �= C and C P is not parallel to
AB . Thus BP = AC ∩ BP and CP = AB ∩ C P . An A-equicevian point is defined to
be a point P through which the cevians BBP , CCP are equal. When talking about A-
equicevian points, we often neglect the points that lie on the line BC , which are trivially
A-equicevian.

Let J be any point on BC , and let X , Y be the points on the extension of AJ such that
CX , BY are parallel to AB , AC , respectively; see Fig. 1. Let U , V be the points on the
rays AJ , J A, respectively, that are infinitely far.

.

In der vorliegenden Arbeit gehen die Autoren der folgenden Fragestellung zur Drei-
ecksgeometrie nach: Gegeben sei ein Dreieck ABC mit einem Punkt P auf der ge-
gebenenfalls verlängerten Höhe über der Seite BC . Es seien dann BP bzw. CP die
Schnittpunkte der Geraden durch die Punkte B, P und A,C bzw. C, P und A, B . Die
Frage besteht nun nach der Existenz von Punkten P mit der Eigenschaft, dass die
Strecken BBP und CCP gleich lang sind. Im Gegensatz zur analogen Fragestellung,
bei der P auf einer Seiten- oder Winkelhalbierenden des Dreiecks ABC liegt, fällt die
Antwort im vorliegenden Fall positiv aus. Bei der Beantwortung der Frage wird man
auf spezielle Polynome geführt, die unerwartete Zusammenhänge eröffnen.
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It is proved in [17] and [1, Theorem 1] that if AJ is the internal angle bisector of A, and if
AB > AC , then

(A-1) BBP > CCP when P lies on the rays JV , YU ,

(A-2) BBP < CCP when P lies on the line segment J X ,

(A-3) BBP = CCP for at least one point P on the line segment XY .

It is also proved in [2] that if AJ is the median through A, and if AB > AC , then

(B-1) BBP > CCP when P lies on the ray JV ,

(B-2) BBP < CCP when P lies on the ray JU .

In this paper, we investigate the A-equicevian points on the altitude AO from A. The-
orem 2 deals with the case when C = 90◦ and its proof is too easy to include, and
Theorem 3 deals with the case when C �= 90◦. As a preparation, we prove a simple
lemma that we shall use in the proof of Theorem 3. It is interesting to see the polynomial
X3 + Y 3 + Z3 − 3XY Z , which has already appeared in the existing literature in several
diverse contexts, appear in the proof of this lemma; see Remark 4. Remark 5 is concerned
with another distinguished polynomial that appears in the proof of Theorem 2.

Lemma 1 Let P = (x2 − y2 − z2)3 − 27x2y2z2, R = x2/3 − y2/3 − z2/3. Then P > 0
if and only if R > 0. Similar statements hold if the inequality sign is reversed or replaced
by an equality.

Proof . Define X , Y , Z by X3 = x2, Y 3 = −y2, Z3 = −z2, and let ω = e2π i/3 be a
primitive third root of 1. Since X ≥ 0, Y ≤ 0, Z ≤ 0, it follows that

(X − Y )2 + (Y − Z)2 + (Z − X)2 = 0 ⇐⇒ X = Y = Z = 0.
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Also, P = (X3 + Y 3 + Z3)3 − 27X3Y 3Z3. Letting F = X3 + Y 3 + Z3 − 3XY Z , we see
that P > 0 ⇐⇒ F > 0 and

F = (X3 + Y 3 + Z3) − 3XY Z

= (X + Y + Z)(X + ωY + ω2Z)(X + ω2Y + ωZ) (1)

= 1

2
(X + Y + Z)

(
(X − Y )2 + (Y − Z)2 + (Z − X)2

)
. (2)

Therefore P > 0 ⇐⇒ F > 0 ⇐⇒ X + Y + Z > 0 ⇐⇒ x2/3 − y2/3 − z2/3 > 0. Similar
statements hold when the sign > is replaced by < or by =. □

Theorem 2 Let ABC be a triangle in which C = 90◦. If A < 45◦, then there are exactly
two A-equicevian points on the line AC. One of these points lies on the side AC and the
other is its reflection about BC. If A ≥ 45◦, then there are no A-equicevian points on the
line AC.

Theorem 3 Let ABC be a triangle in which C �= 90◦ and AB > AC. Let AO be the
altitude from A, and let the line drawn from C parallel to AB meet the line AO at X; see
Figs. 2 and 3. Let ℋ be the orthocenter of ABC, and let A∗, X∗ be the reflections of A, X
about BC. Let

Q = cot2/3 B + cot2/3 C. (3)

(a) There exists a unique A-equicevian point that lies on the ray OX. This point lies
between X and A if C is obtuse and between X and A∗ if C is acute.

(b) On the ray OX∗, there are no A-equicevian points, there is exactly one A-equicevian
point, there are two A-equicevian points according as Q > 1, Q = 1, Q < 1,
respectively. In the last two cases, A is necessarily less than or equal to 45◦, |AO| ≥
8|ℋO|, and the A-equicevian points lie between ℋ′ and A, where ℋ′ is the point on
the segment ℋA with |ℋ′O| = 2|ℋO|.
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Proof . We place ABC in the cartesian plane in such a way that

O = (0, 0), A = (0, α), B = (−β, 0), C = (γ, 0),

where α > 0. Since B < C , it follows that β > 0 while γ is positive, zero, or negative
according as C is acute, right, or obtuse, respectively. In all cases, β2 > γ 2; see Figs. 2
and 3. It is easy to see that

A∗ = (0,−α), ℋ =
(
0,

βγ

α

)
, X =

(
0,

−αγ

β

)
.

For any point P = (0, h) on the line AO, let BBP , CCP be the cevians through P , and let
u = BBP , v = CCP . It is easy to find the coordinates of BP , CP in terms of h and then
to find u, v. In fact, the equations of BBP , AC are given, respectively, by

y = h

β
(x + β), y = −α

γ
(x − γ ).

Therefore

BP =
(

βγ (α − h)

γ h + αβ
,
αh(γ + β)

γ h + αβ

)

and

u2 = (BBP)2 = α2(γ + β)2(h2 + β2)

(γ h + αβ)2
.

By substituting −β for γ and −γ for β, we obtain

v2 = (CCP )2 = α2(γ + β)2(h2 + γ 2)

(βh + αγ )2
.

Subtracting v2 from u2 and simplifying, we obtain

u2 − v2 = (
h3 − (α2 − β2 − γ 2)h + 2αβγ

)
λ,

where

λ =
(

α(β + γ )

(γ h + αβ)(βh + αγ )

)2

(β2 − γ 2)h.

Since λ = 0 if and only if h = 0, it follows that u2 − v2 vanishes if and only if h = 0 or
f (h) = 0, where

f (T ) = T 3 − (α2 − β2 − γ 2)T + 2αβγ. (4)

We will neglect the trivial case h = 0; this corresponds to the point (0, 0) which is trivially
A-equicevian. We also let

E = α2 − β2 − γ 2. (5)

Thus f (T ) = T 3 − ET + 2αβγ.
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We now consider the cases γ > 0 and γ < 0 separately.

Case 1. γ > 0 (i.e., C is acute). Consider g(T ) = − f (−T ) = T 3 − ET − 2αβγ and use
Descartes’ rule of signs; see [7, p. 76] and [20, p. 121]. No matter what the sign of E is, it
follows that g(T ) has at most one positive zero. Therefore f (T ) has at most one negative
zero. Since f (−∞) = −∞ < 0 and f (0) > 0, it follows that f has exactly one negative
zero. In fact, this negative zero lies between −α and −αγ/β because

f (−α) = −α3 + α3 − αβ2 − αγ 2 + 2αβγ

= −α(β − γ )2

< 0,

f
(−αγ

β

)
= −α3γ 3

β3
+ α3γ

β
− αβγ − αγ 3

β
+ 2αβγ

= αγ

β3
(α2 + β2)(β2 − γ 2)

> 0.

Thus the A-equicevian point corresponding to the unique negative zero of f lies between
X and the reflection A∗ = (0,−α) of A about BC .

It remains to find the possible positive zeros. We already know that f has a unique negative
zero. Therefore it has two, one, or no positive zeros if and only if � > 0, � = 0, or � < 0,
respectively, where � is the discriminant of f . The discriminant of T 3 + pT + q is given
by −4p3 − 27q2; see for example [7, Theorem 1, p. 46] or [8, p. 112]. Thus

� = 4[(α2 − β2 − γ 2)3 − 27α2β2γ 2]. (6)

Hence it follows from Lemma 1 and the facts that β/α = cot B and γ /α = cotC that

f has two positive zeros ⇐⇒ � > 0 ⇐⇒ Q < 1,

f has a unique positive zero ⇐⇒ � = 0 ⇐⇒ Q = 1,

f has no positive zeros ⇐⇒ � < 0 ⇐⇒ Q > 1,

where � and Q are as given in (6) and (3).

We shall see now that if f has positive zeros, then A ≤ 45◦ and in particular the ortho-
center ℋ is interior. Also, 8|Oℋ| ≤ |AO| and the zeros of f lie on Aℋ′, where ℋ′ is the
point on Aℋ with |ℋ′O| = 2|ℋO|.
So suppose that f has (one or two) positive zeros. Thus � ≥ 0 and Q ≤ 1. It follows from
� ≥ 0 and (6) and (5) that

E = α2 − β2 − γ 2 ≥ 3 (αβγ )2/3 ≥ 0. (7)

It also follows from Q ≤ 1 and the AM-GM inequality that(βγ

α2

)1/3 =
(β

α

)1/3(γ

α

)1/3 ≤ 1

2

((β

α

)2/3 +
(γ

α

)2/3
)

≤ 1

2
. (8)

This shows that 8|ℋO| ≤ |AO|.
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From f ′(T ) = 3T 2 − E , we see that f decreases for 0 < T <
√

E/3 and increases on
T >

√
E/3. Thus the graph of f looks like a parabola with a vertex at

√
E/3 such that

f (
√

E/3) ≤ 0, f (0) > 0, f (∞) > 0.

Since f (α) = α(β + γ )2 > 0 and f ′(α) = 2α2 +β2 + γ 2 > 0, it follows that α is greater
than the greater zero of f .

Similarly,

f
(2βγ

α

)
=
(2βγ

α

)3 + 2βγ

α
(β2 + γ 2 − α2) + 2αβγ

= 2βγ

α3 (4β2γ 2 + α2β2 + α2γ 2)

> 0,

f ′(2βγ

α

)
= 3

(2βγ

α

)2 − (α2 − β2 − γ 2)

≤ 3
(2βγ

α

)2 − 3(αβγ )
2
3 (by (7))

= 3
(βγ

α

)2
(

4 −
( α2

βγ

) 4
3

)

< 3
(βγ

α

)2
(4 − 24) (by (8))

< 0.

Therefore the smallest zero of f is greater than 2βγ/α. Hence the positive zeros lie
between 2βγ/α and α. In other words, if any A-equicevian points lie above BC , then
they lie between ℋ′ and A, where ℋ′ is the point on ℋA such that |ℋ′O| = 2|ℋO|. One
can also show that the constant 2 cannot be improved.

It remains to show that the condition cot2/3 B + cot2/3 C ≤ 1 implies that cot A ≥ 1, i.e.,
A ≤ 45◦. Let x = cot1/3 B , y = cot1/3 C . Then cot A = (1 − x3y3)/(x3 + y3). Thus it is
enough to show that the minimum of the function g(x, y) = (1 − x3y3)/(x3 + y3) on the
region 	 defined by h(x, y) = x2 + y2 ≤ 1, x, y ≥ 0 is 1.

From

∇g(x, y) =
(

−3x2
(
y6 + 1

)
(
x3 + y3

)2 ,
−3y2

(
x6 + 1

)
(
x3 + y3

)2
)

,

it follows that g has no interior critical points. On the boundary lines x = 0 and y = 0, g
attains its minimum at (0, 1) and (1, 0) and the minimum is 1. On the boundary x2 + y2 =
1, we use Lagrange’s multipliers to obtain

−3x2
(
y6 + 1

)
(
x3 + y3

)2 = 2λx,
−3y2

(
x6 + 1

)
(
x3 + y3

)2 = 2λy.
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Multiplying these equations by y and x , respectively, and subtracting, we obtain

0 = −3x2y(y6 + 1) + 3y2x(x6 + 1) = 3xy(y − x)(1 + xy)(1 − xy)2.

Since xy = 1 and x2 + y2 = 1 do not intersect, we are left with the possibility x = y =√
2/2 with g(x, y) = 7

√
2/8 > 1. Therefore the minimum of g on 	 is 1. Thus A ≤ 45◦.

This completes the proof of the acute case.

Case 2. γ < 0 (i.e., C is obtuse). By Descartes’ rule of signs, f has at most one positive
zero. Since f (0) < 0 and f (∞) > 0, it follows that f has exactly one positive zero. As
in Case 1, we have

f (α) = α(β − γ )2 > 0,

f
(−αγ

β

)
= αγ

β3
(α2 + β2)(β2 − γ 2) < 0.

Therefore the unique positive zero of f lies between α and −αγ/β. The corresponding
A-equicevian point lies between A and X . The rest is similar to the treatment of Case 1,
and we skip it. □

Remark 4 The polynomial F = x3 + y3 + z3 − 3xyz and its wonderful factorization

F := x3 + y3 + z3 − 3xyz = (x + y + z)(x + ωy + ω2z)(x + ω2y + ωz) (9)

that appears in (1) have been a source of great fascination to many. In a letter to Lucy
Donnelly in 1940, Bertrand Russell confessed that he used, when excited, to calm him-
self by reciting the three factors of a3 + b3 + c3 − 3abc; see [6]. The very first section,
Section 1.1 (pp. 3–7), of [3] is devoted to the factorization (9) and its application to
other problems. The mysterious graph in [14] is the graph of a simple deformation of
F and it is the factorization (9) that is used in [11] to remove this mystery. This same fac-
torization (9) is what the Putnam problem (B-1) of [21] is about. Also, the polynomial F is
the favourite polynomial referred to in the title of [16], where the author collects together
properties of this polynomial and applications of its factorization (9). Also, the factoriza-
tion (9) is used in [19] to obtain an immediate elegant derivation of Cardan’s formula for
the roots of a cubic, and in [3] to give a proof of the AM-GM inequality in three variables
(which follows immediately from (2)). In [9, Example, p. 60], it is observed that if x , y, z
are complex numbers located in the complex plane, then the triangle (x, y, z) is equilateral
if and only if (x +ωy +ω2z)(x +ω2y +ωz) = 0. In other words, x3 + y3 + z3 −3xyz = 0
if and only if the triangle (x, y, z) is equilateral or has the origin as its centroid.

The factorization (9) has also played a crucial role in the birth of the theory of Group
Representations; see [15] and [5]. Quoting from [6], this factorization was, historically,
the seed that, watered by Frobenius, grew into the great subject of group representation
theory. In technical terms, the determinant of the cyclic group ℤ3, being the circulant
matrix with row [x y z], is given by

detℤ3 = x3 + y3 + z3 − 3xyz, (10)
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and the fact that it factors into linear factors as in (9) is a manifestation of ℤ3 being abelian.
To explain, given any finite group G = {x, y, z, . . .}, we may think of its elements as
indeterminates and of its multiplication table (with the identity element all over the main
diagonal) as a matrix. Then the determinant of this matrix, a polynomial of degree n in
n indeterminates, is known as the determinant of G. A wonderful theorem that combines
works of Dedekind, Burnside, and Frobenius states that G is abelian if and only if its
determinant factors into linear factors. In view of (10) and the factorization in (9), the
Dedekind-Burnside-Frobenius theorem immediately yields a proof, a truly hilarious proof
indeed, that ℤ3 is abelian.

Finally, many of the beautiful surprises that abound in the literature on Hilbert’s seven-
teenth problem seem to be related to the polynomial F = x3 + y3 + z3 − 3xyz. The first
example of a positive definite polynomial which is not a sum of squares of polynomials is
the polynomial

M(X,Y, Z) = Z6 + X4Y 2 + X2Y 4 − 3X2Y 2Z2

(or its dehomogenization M∗(X,Y ) = 1+X4Y 2+X2Y 4−3X2Y 2) discovered by Motzkin;
see [18, p. 73]. Its relation to F is transparent and is given by

M

(
y2

x
,
x2

y
, z

)
= F(x2, y2, z2).

Actually, M∗ is a minimal example, both in degree and in number of variables. Amazingly
also, M∗ can be expressed as a sum of squares of rational functions; see [18, p. 47]. Similar
statements hold for the Robinson polynomial given by R(x, y, z) = X4Y 2 + Y 4Z2 +
Z4X2 − 3X2Y 2Z2.

Remark 5 The polynomial f (T ) = T 3 − (α2 − β2 − γ 2)T + 2αβγ appearing in (4) is
also very interesting and it was a pleasant surprise to us to see it come up in the context of
equicevian points. If one makes the (seemingly meaningless) substitution T = d , α = a,
β = ib, and γ = ic, where i = √−1, then one obtains the polynomial

G(a, b, c; d) = d3 − (a2 + b2 + c2)d − 2abc.

This is the key polynomial in [4], [11], [12], and [13] and has already shown up in so many
diverse contexts as explained in these references. As detailed in [12], this polynomial (in d)
appears in the context of the fencing problem for triangles, where we are to build, using a
fixed amount of money, the largest triangular fence whose sides cost a, b, c units of money
per unit length. It appears again in the fencing problem for quadrilaterals with costs a,
b, c, and d . It also comes up in finding the largest quadrilateral with three given sides a,
b, and c, and again in finding the diameter of the circle that circumscribes a quadrilateral
three of whose sides have lengths a, b, and c and whose fourth side is a diameter. It also
appears when trying to recover the side lengths of a triangle given the lengths of its angle
bisectors. Now its twin, appearing in (4), is relevant in the totally different context of
finding the equicevian points on the altitudes of a given triangle.
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