
Elem. Math. 68 (2013) 1 – 8
0013-6018/13/010001-8
DOI 10.4171/EM/212

c© Swiss Mathematical Society, 2013

Elemente der Mathematik

Bishop curves and orthogonal trajectories

Clark Kimberling and Peter Moses

Clark Kimberling received his Ph.D. in mathematics from the Illinois Institute of Tech-
nology, Chicago, in 1970. Since then he has been a member of the mathematics de-
partment at the University of Evansville, in Evansville, Indiana.

Peter Moses is an engineer who owns and runs a small company based in the UK.
The company specializes in chaplets and rivets composed of mild steel, stainless steel,
aluminium, etc. and serves various industries.

1 Introduction

In a geometry seminar at the University of Illinois in March 2010, we presented the cubic
quadrarc as the intersection of the cylinders x2 + y2 = 1 and x2 + z2 = 1, and also as the
intersection of the sphere x2 + y2 + z2 = 2 and the cube having vertices (±1,±1,±1).
During the discussion, Professor Richard Bishop pointed out that this curve, consisting of
four arcs, is only 1-smooth at the joints of arcs. He suggested an intersection of elliptic
cylinders, and by varying them we obtain a family of Bishop curves which are everywhere
infinitely smooth.

By an “elliptic cylinder” we mean a cylinder whose base is an ellipse. Figures 2 and 3
indicate that for each pair of intersecting elliptic cylinders, one is parallel to the x-axis,
and the other, to the y-axis. In order to tell more about these cylinders (at the end of this
section) we begin with the parametric equations given by Professor Bishop. Let S denote
the sphere x2 + y2 + z2 = 2. The T -Bishop curve on S, for any T in [−1, 1], is the union
of four arcs, the first given by

x(t) =
√

(1 + t)(1 − T 2t), y(t) =
√

(1 − t)(1 + T 2t), z(t) = √
2T t,

.

Der vorliegende Beitrag ist eine hübsche Ausarbeitung einer Fragestellung aus dem
Bereich der Differentialgeometrie von Kurven und Flächen. Die Autoren untersuchen
glatte Kurven, die als Durchschnitt von elliptischen Zylindern und einer Sphäre entste-
hen. Für diese sogenannten Bishop-Kurven werden mit Hilfe der Mercator-Projektion
die orthogonalen Trajektorien explizit berechnet. Die Ergebnisse der Arbeit werden
durch ansprechende Graphiken illustriert.



2 C. Kimberling and P. Moses

Fig. 1 Cubic quadrarc Fig. 2 Bishop curve

where −1 ≤ t ≤ 1. The arcs are then given by

arc 1: (x, y, z), arc 2: (y,−x,−z), arc 3: (−x,−y, z), arc 4: (−y, x,−z).

Using U = √
2 − 2T 2, endpoints and midpoints are shown in Table 1.

Table 1. Eight special points on arcs 1–4

t = −1 t = 0 t = 1

arc 1 (0,U,−√
2T ) (1, 1, 0) (U, 0,

√
2T )

arc 2 (U, 0,
√

2T ) (1,−1, 0) (0,−U,−√
2T )

arc 3 (0,−U,−√
2T ) (−1,−1, 0) (−U, 0,

√
2T )

arc 4 (−U, 0,
√

2T ) (−1, 1, 0) (0,U,−√
2T )

The four points for which t = 0 lie on the equator, z = 0. If T > 0, then arc 1 rises through
the equator at (1, 1, 0), up to (U, 0,

√
2T ), where it meets arc 2. The curve continues

around the sphere, returning to arc 1.

Ten Bishop curves, obtained by taking T = 0.09, 0.19, . . . , 0.99, are represented in Fig-
ure 3, where they indicate that as T increases, certain angles associated with the T -Bishop
curves increase, in accord with a one-to-one correspondencewith T . Let α be the maximal-
sized angle, from the origin, between the curve and the equator, so that α is the directed
angle between the segments (0, 0, 0)-to-(

√
2, 0, 0) and (0, 0, 0)-to-(U, 0,

√
2T ). Let β be

the directed acute angle that the curve makes wherever it crosses the equator. The corre-
spondence between T and the two angles is then given by

T = sin α = tan(β/2).

It is easy to show that each of the intersecting cylinders has minor axis of length (1 +
T 2)/|T | = 2| cscβ| and major axis of length 2

√
2| cscβ|, and that the distance from
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Fig. 3 Ten Bishop curves

either cylindrical axis to the xy-plane is

1 − T 2

√
2T

= √
2 cotβ = cosα cotα√

2
.

2 Another parametrization
In this section, assume that T > 0 and project arcs 1 and 2 orthogonally onto the yz-plane.
The resulting curve is a portion of the ellipse

y2 + z2

2
+ 1 − T 2

√
2T

z = 1.

Completing the square and putting y = k1 sin t gives z = √
2(k1 cos t − k2), where

k1 = 1 + T 2

2T
and k2 = 1 − T 2

2T
.

Then x = √
2 − y2 − z2. Using both (x, y, z) and (−x,−y, z), the portion of the Bishop

curve thus far accounted for comprises the top half, corresponding to z ≥ 0, which is to
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say that − arccos(k2/k1) ≤ t ≤ arccos(k2/k1). For the bottom half, project arcs 3 and 4
onto the xz-plane, and proceed as before. Regarding (x, y, z) as the first of four new arcs
that comprise the curve, the final results are as shown here:

arc 1′: (x, y, z), arc 2′: (−y, x,−z), arc 3′: (−x,−y, z), arc 4′: (y,−x,−z).

Using these arcs, we have, in Table 2, the same eight points as in Table 1. Here, however,
the joints of neighboring arcs are midpoints in Table 1, and midpoints in Table 2 are joints
in Table 1.

Table 2. Eight special points on arcs 1′–4′

t = − arccos(k2/k1) t = 0 t = arccos(k2/k1)

arc 1′ (1,−1, 0) (U, 0,
√

2T ) (1, 1, 0)

arc 2′ (1, 1, 0) (0,U,−√
2T ) (−1, 1, 0)

arc 3′ (−1, 1, 0) (−U, 0,
√

2T ) (−1,−1, 0)

arc 4′ (−1,−1, 0) (0,−U,−√
2T ) (1,−1, 0)

The first parametrization shows that for T < 1, the T -Bishop curve is analytically smooth
except possibly at the four joints, shown in column 3 of Table 1. The second parametriza-
tion shows that the same curve is analytically smooth at those four points. (Analytically
smooth means that at every u, there is a neighborhood of N(u) of values t for which there
is a parametrization x(t), y(t), z(t) such that each of these has a convergent Maclaurin
series; analytic smoothness implies infinite smoothness, in the sense that x (n), y(n), z(n)

exist and are continuous in N(u).)

3 Orthogonal trajectories
Among of the most charming objects in elementary differential equations are orthogonal
trajectories – curves in a plane with the remarkable property that wherever one of them
meets a curve in a prescribed family, the angle of intersection is π/2. In this section, we
shall determine families of orthogonal trajectories on a sphere: x2 + y2 + z2 = R2, on
which longitude � = arcsin(z/R) and latitude � = arctan y/x . For the T -Bishop curve,

R = √
2, � = arcsin(tT ), � = arctan

√
(1 − T )(1 + tT 2)

(1 + t)(1 − tT 2)
.

Now apply the Mercator angle-preserving mapping to uv-plane, using u = � and v =
arctanh(sin�). Eliminating t leaves

v = (1/2)arcsinh
(
2T cos

2u

1 − T 2

)
,

so that
dv/du = −2T

√
1 + T 4 + 2T 2 cos(4u) sin(2u).
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Fig. 4 Bishop curves and orthogonal trajectories

Eliminating T leaves
dv/du = ± tan 2u tanh 2v,

so that the orthogonal trajectories are given by

dv/du = ∓ cot 2u coth 2v,

with general solution v = ± arcsech(k csc 2u), where 0 ≤ k ≤ 1 and 0 ≤ u ≤ π/2.
Next, apply inverse Mercator projection with � = arctan(sinh v) and � = u. Writing t for
�, we then have parametric equations for the spherical curves which are the orthogonal
trajectories of the Bishop curves:

x(t) = 2

√
k

k + sin 2t
cos t,

y(t) = 2

√
k

k + sin 2t
sin t,

z(t) = ±
√−2k + 2 sin 2t

k + sin 2t
,

where 0 ≤ k ≤ 1 and (1/2) arcsin k ≤ t ≤ (1/2)(π − arcsin k).
An interesting spinoff is yet another parametrization of the T -Bishop curve, found as or-
thogonal trajectories of orthogonal trajectories:

x(t) = 2t√
1 + √

1 + k2(1 − 2t2)2
,

y(t) = 2
√

1 − t2√
1 +

√
1 + k2(1 − 2t2)2

,

z(t) = 2k(2t2 − 1)√
1 +

√
1 + k2(1 − 2t2)2

,
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Fig. 5 Elliptic cylinders intersecting sphere in orthogonal trajectories
of Bishop curves

where k = 2T/(1 − T 2), −1 ≤ T ≤ 1, −1 ≤ t ≤ 1. This is one of 2 arcs – instead
of 4 – so that there are only 2 joints to be examined for infinite smoothness; indeed, by
symmetry, we have infinite smoothness at those 2 joints.

Note that, with a small number of exceptions, every point on the sphere lies on exactly one
Bishop curve and on exactly one of the orthogonal trajectories.

At an October 2010 session of the aforementioned seminar, Professor John Wetzel, upon
viewing Figure 4, suggested that the orthogonal trajectories may be intersections of elliptic
cylinders with the sphere. Indeed, the family is given by

x(θ) =
√

1 − k

2
cos(θ − xy),

y(θ) =
√

1 − k

2
cos(θ + xy),

z(θ) =
√

2 − 2k

1 + k
sin θ,

where −π < θ < π . Figure 5 shows two of these cylinders. Be sure to visit the related
animation ([2], item 26).

The orthogonal trajectories of Bishop curves are also intersections of hyperbolic cylinders
with a sphere. These cylinders are given by

x2 + 2xy/k + y2 = 4

and are typified by the animation ([2], item 28).
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4 Complementary cylinders

What others pairs of cylinders intersect in smooth curves on a sphere? We begin with an
example: the intersection of a parabolic cylinder and a circular cylinder. Let

x =
√

1 + t − t2, y =
√

1 − t2, z = t,

where (1 − √
5)/2 ≤ t ≤ 1, so that x , y, z are all ≥ 0. Define four arcs by

arc 1: (x, y, z), arc 2: (−x, y, z), arc 3: (x,−y − z), arc 4: (−x,−y, z).

The curve G consisting of the four arcs has the following properties:

(1) G lies on the sphere x2 + y2 + z2 = 2;

(2) the orthogonal projection of G onto the yz-plane is the part of the parabola given by
z = 1 − y2 and z ≥ (1 − √

5)/2; and

(3) the orthogonal projection of G onto the xz-plane is the part of the circle given by
x2 + (z − 1/2)2 = 5/4 and (1 − √

5)/2 ≤ z ≤ 1;

that is, letting ϕ = (1 + √
5)/2 be the golden ratio, all of the points of the circle except

those satisfying 1 < z ≤ ϕ. The curve G is shown in Figure 6.

Fig. 6 The curve G as the intersection of the cylinders x2 = 1+z−z2

and y2 = 1 − z
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As the example suggests, one can start with an arbitrary cylinder 𝒞 parallel to the y-axis
and, by intersecting with a sphere x2 + y2 + z2 = R2, create a second cylinder, parallel to
the x-axis. We shall call this second cylinder the complement of 𝒞 and denote it by 𝒞⊥. If
𝒞 is given by y = f (z), then 𝒞⊥ is given by

x2 = R2 − [ f (z)]2 − z2.

This equation shows that if the yz-trace of 𝒞 is a conic, then the xz-trace of 𝒞⊥ is also a
conic. Picture 9 in [2] shows intersecting horizontal hyperbolic and elliptic cylinders.
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