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Algerian and French universities. Since 1994 he is Maı̂tre de Conférences at Université
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Let 𝔽q be the finite field of characteristic p containing q = pr elements. A polynomial
f (x) ∈ 𝔽q [x] is called a permutation polynomial of 𝔽q if the induced map f : 𝔽q → 𝔽q is
one to one. The study of permutation polynomials goes back to Hermite [2] for 𝔽p and to
Dickson [1] for 𝔽q . One of the open problems proposed by Lidl and Mullen [3], is to find
new classes of permutation polynomials of 𝔽q . We refer to [4] or [5] for the basic results on
permutation polynomials. Wan and Lidl [7], gave conditions on a polynomial of the form
xr f (x (q−1)/d) to be a permutation polynomial. The conditions are not explicitely given
in terms of q and r , and may be difficult to verify in general. In the present note, without
using the characterization of Wan and Lidl [7], but using only an elementary method, we
exhibit a new class of permutation polynomials. We prove the following:

Theorem 1 Let q = pr , where p is a prime number and r is a positive integer. Let u be a
positive integer and let

f (x) = xu(x q−1
2 + x

q−1
4 + 1

)
. (1)

.

Unter einem Permutationspolynom des kommutativen Ringes R mit Einselement ver-
steht man ein Polynom p ∈ R[x], für welches die durch πα := p(α) definierte Ab-
bildung von R nach R eine Permutation der Ringelemente ist. Permutationspolynome
sind beliebte Studienobjekte der Zahlentheorie, der Algebra und der Kombinatorik.
Am besten untersucht ist wohl der Fall, wenn R ein endlicher Körper ist. Die Auto-
ren der vorliegenden Arbeit steuern zu dieser Theorie eine neue, einfache Klasse von
Permutationspolynomen bei.
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Assume that the following conditions hold:

(i) gcd(u, q − 1) = 1.

(ii) q ≡ 1 (mod 8).

(iii) 3
q−1

4 ≡ 1 (mod p).

Then f (x) is a permutation polynomial of 𝔽q .

Proof . We will prove that under the above conditions, the polynomial f induces a one-
to-one application on 𝔽q . Suppose that f (a) = f (b) for some elements a and b of 𝔽q .

If one of them, say a, is 0, then bu
(
b

q−1
2 + b

q−1
4 + 1

) = 0. Suppose that b �= 0, then

b
q−1

2 + b
q−1

4 + 1 = 0. Set c = b
q−1

4 , then c2 + c + 1 = 0 and c is a cubic root of unity.
Condition (iii) implies c �= 1. We have c = c4 = bq−1 = 1, which is a contradiction. It
follows that b = 0 = a.

From now on we may suppose that ab �= 0. It is clear that a
q−1

2 = ±1 and b
q−1
2 = ±1. By

symmetry, we have to consider only the following three cases:

Case 1: If a
q−1
2 = b

q−1
2 = 1. If a

q−1
4 = b

q−1
4 = 1, then au = bu , hence ( a

b )u = 1.

Therefore a = b by (i). To complete Case 1, we may suppose that a
q−1

4 = 1 and b
q−1

4 =
−1. From equation (1) we have 3au = bu or ( b

a )u = 3. We deduce that

(
b

q−1
4

a
q−1

4

)
= 3

q−1
4 ,

hence (−1)u = 1 by (iii). By (i), u is odd and we reached a contradiction.

Case 2: If a
q−1

2 = b
q−1
2 = −1. From equation (1) we get: au+ q−1

4 = bu+ q−1
4 , hence

(b/a)u+ q−1
4 = 1. The order δ of b/a in 𝔽q divides q − 1 and u + q−1

4 . Let l be a prime
factor of δ. Because u is odd and by (ii), we may exclude the case l = 2. It follows that l
is odd and l | q−1

4 , therefore l | u, which contradicts (i).

Case 3: If a
q−1
2 = −b

q−1
2 = 1. Here we have a

q−1
4 = ±1 and b

q−1
4 = ζ , where ζ is a

primitive quartic root of unity.

• If a
q−1

4 = −1 and b
q−1

4 = ζ , then by equation (1), we have au = ζbu . We deduce
that (a/b)u = ζ , therefore (a/b)4u = 1. Using (i), we conclude that (a/b)4 = 1. If

a/b = −1, then a
q−1
2 = (−1)

q−1
2 b

q−1
2 = b

q−1
2 , which is a contradiction. Suppose

next that a/b = ±ζ , then a
q−1

2 = (±ζ )
q−1

2 b
q−1

2 . Hence 1 = (ζ 4)
q−1

8 (−1) = −1,
which is a contradiction. We conclude that a = b.

• Suppose now that a
q−1

4 = 1 and b
q−1
4 = ζ , then by equation (1) we have 3au =

ζbu . By condition (iii), the characteristic of the field is �= 3, hence we may write

this equation in the form: (a/b)u = ζ/3. It follows that

(
a

q−1
2

b
q−1

2

)u

= ζ
q−1

2

3
q−1

2

, hence

3
q−1

2 = −1, contradicting (iii). □

Remark 1 The minimal example for Theorem 1 is when p = 7 and q = 72.
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Example 1 Let p be a prime number such that p ≡ 1 (mod 8) and p ≡ 1 (mod 3) and
let q = pr where r is positive and even. It is clear that condition (ii) of Theorem 1 is

satisfied. Euler criteria gives that 3
p−1
2 = ( 3

p

) = 1 (see [6]). It follows that 3
p−1
4 = ±1,

hence 3
q−1

4 = (3
p−1
4 )(1+p+...+pr−1) = 1 and condition (iii) of Theorem 1 is fulfilled. By

Dirichlet’s theorem (see [6]), there exist infinitely many prime numbers p ≡ 1 (mod 8)

and p ≡ 1 (mod 3). The smallest such prime is 73. Any polynomial f (x) of the form (1)

such that u satisfies condition (i) of Theorem 1 induces a permutation of 𝔽q . We may put
u = 1 for example.
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