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1 Introduction

Recently Katsuyuki Shibata introduced a new kind of center of a triangle, which he calls
the illuminating center ([3]). It is a point that maximizes the total brightness of a triangular
park Ω obtained by a light source on that point, namely, a point that maximizes V0(x) =∫
Ω |x − y|−2 dμ(y), where μ is the standard Lesbegue measure of ℝ2. Unfortunately,

V0(x) is not well-defined; it diverges for any point inΩ . In order to produce a well-defined
potential, Shibata used the cut-off of the divergence of the integrand.

In [2] the author introduced the renormalization of
∫
Ω |x − y|α−m dμ(y) (which is called

the Riesz potential when 0 < α < m) of a compact subset Ω in ℝ
m which is a closure

of an open set for α ≤ 0 to obtain a one-parameter family of (renormalized) potentials
V (α)
Ω , and studied the points where the extremal values of V (α)

Ω are attained, which we
call the rα−m-centers of Ω . The notion of rα−m -centers includes not only Shibata’s illu-
minating center of a planar domain as an r−2-center, but also the center of mass of any
compact set Ω ⊂ ℝ

m as r2-center. This is because the center of mass xG is given by

.

Clark Kimberling listet auf seiner Web-Seite Encyclopedia of Triangle Centers inzwi-
schen weit über 5000 Dreieckszentren auf. Dort ist z.B. X (1) der Inkreismittelpunkt,
X (2) der Schwerpunkt, oder X (54) der Kosnita-Punkt eines Dreiecks. Zahlreiche die-
ser Zentren lassen sich auf unterschiedlicheWeise charakterisieren. In der vorliegenden
Arbeit wird gezeigt, dass der Inkreismittelpunkt gleichzeitig eine gewisse Funktion mi-
nimiert: Dazu betrachtet man das Dreieck als Grundfläche einer Pyramide mit Spitze p.
Aus deren Volumen und Oberfläche bildet man sodann einen geeigneten skaleninvari-
anten von p abhängigen Quotienten. Minimiert man die so definierte Funktion so fällt
die Projektion des optimalen Punktes p auf die Grundfläche just in den Inkreismittel-
punkt des Dreicks.
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xG = ∫
Ω

y dμ(y)/
∫
Ω

1 dμ(y), or equivalently by
∫
Ω
(xG − y) dμ(y) = 0, which implies

that it can be characterized as a unique critical point of the map V (m+2)
Ω : ℝ

m � x �→∫
Ω |x − y|2 dμ(y) ∈ ℝ.

Shibata announced 1 a theorem that an ra-center of a non-obtuse triangle approaches the
circumcenter as a goes to +∞ and to the incenter as a goes to −∞. The proof with more
generality is given in [2]. Thus, we can give interpretations of the barycenter, circumcenter,
and incenter of a triangle as points that optimize a kind of potential and the limits of them.

The motivation of the theorem in this note comes from the same philosophy; to express a
center as a point that optimizes a kind of potential. Our potential in this note is the ratio
of the volume of the cone over a given triangle Ω and the area of its boundary, with the
former being squared and the latter cubed to make the ratio scale invariant. Then, the image
of the regular projection of a vertex of a cone that optimizes this ratio is nothing but the
incenter.

2 Cone isoperimetric center

Let Ω be a compact set which is a closure of an open subset of ℝ
2 with a piecewise

C1 boundary ∂Ω . We assume that ℝ2 is embedded in ℝ
3 in a standard way; ℝ

2 =
{(x1, x2, 0) ∈ ℝ

3 | xi ∈ ℝ}. Let �h denote a level plane in ℝ
3 with height h > 0,

�h = {x3 = h}, and Cp a cone overΩ with vertex p ∈ �h , Cp = {tx + (1 − t)p | x ∈
Ω, 0 ≤ t ≤ 1}. Let π : ℝ3 → ℝ

2 be the regular projection.

Definition 2.1.

(1) Let ph be a point in �h where the minimum value of a function �h � p �→
Area (∂Cp) is attained. We call π(ph) a cone isoperimetric center of Ω of height
h.

(2) Let p be a point in ℝ
3+ = {x3 > 0} that gives the minimum value of a function

f (p) =
(
Area (∂Cp)

)3

(
Vol (Cp)

)2 .

We call Cp an isoperimetrically optimal cone and π(p) a cone isoperimetric center
ofΩ .

Lemma 2.2. Let 
ABC be a triangle. Then there exists a cone isoperimetric center of
height h for any h > 0.

Proof. Let S be the area, and a, b, and c the lengths of the edges BC , C A, and AB ,
respectively. Fix h > 0. Let P ∈ �h be a point and D = π(P). Let u, v, and w be the
distances with signs between D and the lines BC , C A, and AB, respectively. The signs
of u, v, and w are given as follows. We put u > 0 if D and A are in the same half-plane
cut out by the line BC. Remark that the position of D is determined uniquely by u and v.
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Then the area of the triangle �ABC is given by S = 1
2 (au + bv + cw), and the area of

the boundary of the cone is given by

Area (∂CP) = S + 1

2

(
a
√

u2 + h2 + b
√
v2 + h2 + c

√
w2 + h2

)
. (1)

Let the right-hand side of (1) be denoted by ψ(D). Then, it takes the value S + 1
2 (a + b +

c)
√

r2 + h2 at the incenter I , where r is the radius of the inscribed circle. Put

ρ = a + b + c

min{a, b, c}
√

r2 + h2.

Let N̄ρ(BC) be the set of points so that the distance to the line BC is not greater than ρ,
namely, a closed strip with central axis BC which is 2ρ wide. Two other strips, N̄ρ(C A)
and N̄ρ(AB), can be defined similarly. Put K = N̄ρ(BC) ∩ N̄ρ(C A) ∩ N̄ρ(AB). Then K
is a compact set containing I .

Suppose D 
∈ K . Then at least one of |u|, |v|, and |w| is greater than ρ. Therefore,

ψ(D) > S + 1

2
min{a, b, c}

√
ρ2 + h2 > S + 1

2
min{a, b, c}ρ = ψ(I ),

which implies infD′∈K ψ(D′) = infD′′∈ℝ2 ψ(D′′). Since ψ is continuous and K is com-
pact, there is a point D ∈ K where infD′∈K ψ(D′) is attained.

It follows that infD′′∈ℝ2 ψ(D′′) is also attained at D. □

Theorem 2.3. Let 
ABC be a triangle. The cone isoperimetric center of height h coin-
cides with the incenter for any h > 0. The height of the isoperimetrically optimal cone is
2
√

2 times the radius of the inscribed circle.

Proof. (1) Let us use the same notation as in Lemma 2.2.

Let Dh be a cone isoperimetric center of �ABC of height h, and uh , vh , and wh be the
signed distances between Dh and the lines BC, C A, and AB, respectively. Then the pair
(uh, vh) minimizes a function

F(u, v) = a
√

u2 + h2 + b
√
v2 + h2 + c

√(
2S − au − bv

c

)2

+ h2.

Therefore, when (u, v,w) = (uh, vh , wh) we have

Fu(u, v)= au√
u2 + h2

+ cw√
w2 + h2

·
(
−a

c

)
= 0,

Fv(u, v)= bv√
v2 + h2

+ cw√
w2 + h2

·
(

−b

c

)
= 0,

which implies
u√

u2 + h2
= v√

v2 + h2
= w√

w2 + h2
. (2)
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Remark that the above holds only when u, v, and w are all positive, implying that Dh is
in the interior of �ABC . The equation (2) means that three angles between the xy-plane
and three planes through P AB , PBC , and PC A are all equal. Therefore, each pair of
the three planes is symmetric in a plane which is orthogonal to the xy-plane and contains
the intersection line of the pair. These three symmetries show that the three lines Dh A,
Dh B , and DhC , which are the intersections of the xy-plane and the three planes of the
symmetries, are the angle bisectors of ∠A, ∠B , and ∠C , respectively. It follows that Dh

coincides with the incenter of �ABC .

(2) The second statement follows from elementary calculus. Let r be the radius of the
inscribed circle. Put Ph = π−1(Dh) ∩�h , then

Area (∂CPh ) = S + 1

2
(a + b + c)r

√
1 +

(
h

r

)2

= S

⎛
⎝1 +

√
1 +

(
h

r

)2
⎞
⎠ .

As Vol (CPh ) = 1
3 Sh,

f (Ph) =
(
Area (∂CPh )

)3

(
Vol (CPh )

)2
= 9S

(
1 +

√
1 + ( h

r

)2
)3

h2
= 9S

r2
·

(
1 +

√
1 + ( h

r

)2
)3

( h
r

)2
.

Since ϕ(t) =
(
1+

√
1+t2

)3

t2
(t > 0) takes the minimum at t = 2

√
2, it completes the

proof. □

Remark 2.4. The above theorem means that the cone isoperimetric center of height h is
identically the same for any h > 0 and that it coincides with the limit of ra-center as a
goes to −∞ for triangles. But it does not hold in general as an example below shows.

Let us call a point an asymptotic r−∞-center ofΩ if it is the limit of a convergent sequence
of rai -centers with ai → −∞ as i → +∞. We showed in [2] that an asymptotic r−∞-
center is a max-min point of Ω , by which we mean a point that gives the supremum of a
map ℝ

2 � x �→ miny∈Ωc |y − x | ∈ ℝ, whereΩc denotes the closure of the complement of
Ω . We remark that an ra-center (a ≤ −2) and a max-min point are not necessarily unique.
To see this, it is enough to consider a disjoint union of two rectangles, say,Ω ′ = {(ξ, η) |
1 ≤ |ξ | ≤ 2, |η| ≤ 2}.
Let Ω be a trapezoid given by Ω = {(ξ, η) | 0 ≤ ξ ≤ 2, |η| ≤ 1 + 1

2ξ}. It is easy to see
that a cone isoperimetric center of height h is on the ξ -axis for any h. Let it be given by
(ξh , 0). Numerical experiments show that ξ1 ∼ 0.9169, ξ2 ∼ 0.9079, ξ3 ∼ 0.9045, and
ξ4 ∼ 0.9031, and the minimum of the ratio f is attained at h ∼ 3.250 when ξh ∼ 0.90405.
On the other hand, an asymptotic r−∞-center is (1, 0). This is because the set of max-min

points is {(1, η) | |η| ≤ 3
2 −

√
5

2 } whereas any ra-center is contained in {(ξ, 0) | 1 ≤ ξ ≤ 7
4 }

for any a by the symmetry argument (based on the moving plane method [1]) explained in
[2], and the point (1, 0) is the unique intersection point of these sets.
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