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An easy but fundamental fact in elementary number theory is Fermat’s little theorem:

Let p be a prime number. Then for all (rational) integers x we have x p ≡ x
(mod p) (or equivalently x p−1 ≡ 1 (mod p) if p does not divide x).

It is clear from the definition of a prime number that an integer n > 1 is a prime number if
and only if for all integers x not divisible by n the congruence xn−1 ≡ 1 (mod n) holds.
However, if only xn−1 ≡ 1 (mod n) holds for all integers x which are coprime with n
(i.e., gcd(x, n) = 1), equivalently xn ≡ x (mod n) for all integers x coprime with n, then
n need not be a prime number.

Composite positive integers n which have this last mentioned property are called Car-
michael numbers in reference to Carmichael’s article [3] of 1912.

In this way Carmichael numbers provide just the examples of composite positive integers n
that pass all possible primality tests using Fermat’s little theorem requiring gcd(x, n) = 1
for the test input parameter x . All Carmichael numbers are odd, square-free and have at

.

Der Restklassenring ℤ/mℤ für eine natürliche Zahl m > 1 ist bekanntlich genau
dann ein Körper, wenn m eine Primzahl ist. Hieraus ergibt sich der kleine Satz von
Fermat: Wenn p eine Primzahl ist, so gilt die Kongruenz x p ≡ x (mod p) für alle
ganzen Zahlen x . Man kann nun die Frage stellen, für welche natürlichen Zahlen m bei
festem, gegebenem n > 1 die Kongruenzen xn ≡ x (mod m) für alle ganzen Zahlen x
gelten. Diese Frage wird hier beantwortet, wobei sich enge Beziehungen zum kleinen
Satz von Fermat, zu den sogenannten Carmichael-Zahlen und zum Korselt-Kriterium
für Carmichael-Zahlen herausstellen. Entscheidend sind die Teilbarkeitsbeziehungen
zwischen q − 1 und n − 1 für die Primteiler q von n.
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least three prime factors, the smallest Carmichael number being n = 561 = 3 ·11 ·17. It is
a deep and brilliant result of Alford, Granville and Pomerance that there are even infinitely
many Carmichael numbers, see [1].

All theorems on Carmichael numbers are based on their characterization by Korselt’s cri-
terion which (in our terminology) tells that a composite positive integer n is a Carmichael
number if and only if n is square-free and p − 1 divides n − 1 for every prime divisor p
of n, see [5]. Note that Carmichael rediscovered Korselts’s criterion much later, but ap-
parently he was not aware in his 1912 paper [3] of Korselt’s previous result of 1899 given
in [5]. Thus Carmichael numbers maybe should rather be called Korselt numbers in order
to acknowledge that Korselt was the first author who studied these numbers and obtained
their characterization.

Korselt’s criterion is well known in the literature. On the other hand it seems to be less
known that it admits an easy but interesting generalization. In the present short note the
following extension of Korselt’s criterion is established. Some facts which might lead to
the idea of this generalization can be found in several exercises given in a few textbooks
on elementary number theory, e.g., in [4, Übung 7.2 a) and b)] or [7, p. 159].

In the following, as usual, ℕ denotes the set of natural numbers and ℤ denotes the set of
(rational) integers.

Theorem. Suppose n is an integer ≥ 2. Let �(n) denote the set of all prime numbers p
such that p − 1 divides n − 1. Then there exists a unique positive integer κ(n) with the
following property:

If for any positive integer m the congruence xn ≡ x (mod m) holds for all x ∈ ℤ then
m divides κ(n); hence κ(n) is the largest integer with this property. Moreover, we have
κ(n) = ∏

p∈�(n) p.

κ(n) is called the Korselt indicator of n.

Proof. As usual, write x | y to indicate that x divides y, with corresponding notation for
the negation. Set κ(n) := ∏

p∈�(n) p.

(i) If p ∈ �(n) then xn ≡ 0 ≡ x (mod p) holds if p | x and if p ∤ x then by Fermat’s
little theorem xn−1 = x (p−1)t ≡ 1t = 1 (mod p) where n − 1 = (p − 1)t . It follows that
xn ≡ x (mod p) holds for all x ∈ ℤ and therefore xn ≡ x (mod κ(n)) for all x ∈ ℤ.

(ii) Conversely suppose that m ∈ ℕ \ {0, 1} has the property that xn ≡ x (mod m) for all
x ∈ ℤ.

If m were not square-free, i.e., divisible by the square of a prime p, then we would have
xn ≡ x (mod p2) for all x ∈ ℤ, hence also pn ≡ p (mod p2), thus (pn−1 − 1)p ≡ 0
(mod p2) and therefore pn−1 ≡ 1 (mod p), a contradiction. So m is necessarily square-
free.

If p is a prime divisor of m then for all x ∈ ℤ we have xn ≡ x (mod p). But there exists
a primitive root a modulo p, i.e., the order of a + pℤ in the group of units in ℤ/pℤ is
p − 1. So we have an−1 ≡ 1 (mod p), hence p − 1 | n − 1. It follows p ∈ �(n) and
finally m | κ(n) since m is square-free. The theorem follows.
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Note that κ(n) divides n! by its very definition. There are some easy consequences worth
noticing: the following assertion (i) is essentially a restatement of Korselt’s criterion
whereas assertion (ii) reflects the well known fact that Carmichael numbers are odd.

Corollaries. Let n be an integer ≥ 2. Let ℙ denote the set of prime numbers. Then the
following hold.

(i) n is a prime number or a Carmichael number if and only if n divides κ(n).

(ii) n is even if and only if κ(n) = 2. n is odd if and only if 6 divides κ(n).

(iii) If n = 2b + 1 for b ∈ ℕ then �(n) = {2} ∪ {p ∈ ℙ | p is a Fermat prime ≤ n};
κ(n) is bounded by a constant as a function of b if and only if there exist only finitely
many Fermat primes.

Proof. (i) is an immediate consequence of the theorem and the definition of prime numbers
and Carmichael numbers; clearly it implies Korselt’s criterion. (ii) and (iii) are easily
verified.

Remark. Computations of the Korselt indicator κ(n) suggest that there might be infinitely
many (odd composite) natural numbers such that κ(n) = 6.
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