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1 Definitions and introduction

Let S, be the set of permutations of the numbers 1, 2, ..., n. How many = = (w1, 72, .. .,
) € S, are alternating, that is 7y < mp > w3 < ---? This question was answered by
André in 1881 [2]. He proved that the exponential generating function of numbers of such
permutations is the sum of tangent and secant (Section 6).

In 1968, Niven generalized this problem [11]. For every m = (1, m2,...,7,) € S, he
defines the signature Q = (q1, g2, - .-, gn—1) by

1, if m <mipg
qi ‘= .
—1, if m > miyg

and proves by a determinant a formula of the number [Q] of all # € S,, with given signa-
ture Q.

An jeder Stelle i einer Permutation # = (1, 72, ..., ,) der Zahlen 1, 2, ..., n gilt
entweder w; < w41 (“up”) oder w; > miy) (“down”). Dabei geben etwa die Euler-
schen Zickzackzahlen die Anzahl alternierender Permutationen an, bei denen sich “up”
und “down” abwechseln und dabei mit “up” beginnen. Diese Zahlen tauchen in der
Potenzreihenentwicklung der Tangens- und der Sekansfunktion auf, wie Désiré André
1881 feststellte. Notiert man die “ups” und “downs” geeignet als Dualzahl, so erhélt
man den Index k der Permutation 7. Fiir die Anzahl der Permutationen mit gegebenem
Index k haben die Autoren das Symbol { Z} eingefiihrt. Es dhnelt dem Binomialkoeffi-
zienten (Z) und geniigt unerwarteten neuen Gleichungen und Ungleichungen.
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Since this Niven’s celebrated result, many mathematicians obtained important results in
this topic (for example, see papers [3]-[6], [8], [10], [12], [14]-[16]). However, in spite of
many works on this topic, the technique of enumeration and estimation of the number of
permutation with a fixed Niven signature remained rather weak and was based mainly on
Niven’s determinant only. An exception to the general rule worth mentioning is André’s
alternating permutations. Niven wrote (see Section 4, p. 119 in [11]) that he was unable
to formulate general equalities and inequalities for the numbers of permutations having
different signatures. By this, he posed an important problem to get such relations. Re-
cently in [13], the first-named author introduced a new symbol {Z} and found methods to
compute it.

Definition. Let 7 € S, with signature Q = (g1, 42, -- -, qn—1)-

a) We call the dual number

k=k@= 3 277

1<i<n—1: g;=1

the index of .

b) We denote by {’Z} the number of permutations of S, with index &k and call it the
up-down coefficient of 7.

For every natural n, the map from the signatures to the indices
(L, -1)""'5q0,1,....277' =1} : 0 = k(Q)

is bijective. So, the new symbol {}} equals the number [Q] of permutations of S, with
Niven’s signature Q.

Example. The permutation 7 = (2, 1,4,3) € S4 has signature 0 = (—1, 1, —1) and
index 2. The other permutations of index 2 are (3, 1,4, 2), (3,2,4,1), (4,1,3,2) and
4,2,3,1);50 {3} = 5.

In [13] it is shown that {’IZ} is a polynomial in n with rational coefficients for every fixed k,
and also a recursive method to compute these coefficients and a table of the {Z}, 0<k<
31, are given.

In this note we reformulate results of Niven [11] in the context of up-down coefficients,
prove new equalities (Section 3) and inequalities (Section 4) between symbols and describe
their connection with binomial coefficients (Section 2) and Euler and Bernoulli numbers
(Section 6). It is astonishing that up-dow coefficients contain such a large algebraic struc-
ture.

2 Up-down coefficients and binomial coefficients

The following table contains simple properties of up-down coefficients {Z} and binomial
coefficients (7). Below n is a natural number.
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= S

(a) 15{ }sn! 0<k<2"h, 15(2)52" O <k<n)

®) {Z} {2n_1f1_k}’ <Z>:<nik>

o 5 bl 20

0<k<2n—1 0<k=<n
n n
@ > (—1)’<{k} =0(n>1. Y (—1)’<<k) =0
0<k<2n—1 0<k<n
n n n!
@ > {k}= > {k}=3 (n> 1),
0<k<2"—1, 0<k<2"—1,
k even k odd
= 0-2 0
0<k<n, <k 0<k=<n, k
k even k odd

oLt =B (D000

Proof of (a)—(f). (a) The upper estimate is trivial, since the cardinality of S,, is n! We prove
that {Z} # 0 by induction on nn. Suppose that the statement is valid forn—1,0 < k < 2"~2,
Now let 0 < k < 2"~!. Distinguish two cases.

Dk =2+1.Since 0 <[ < 2" 2, there exists (71, 72, ..., Tn—1) € Su_i with
index [. Then (71, 72, ..., mu—1, n) has index 2/ + 1. Hence {}} > 1.

2) k=21.1f (my, 3, ...,y—1) € S;—1 hasindex [, then (w1 + 1,12+ 1, ..., 7,1 +
1,1) € S, has index 2I. Hence {}} > 1.

Since, evidently, {} = 1, the proof is complete.

(b) The map F : (w1, m2,...,7m) = (n+ 1 — 7w, n+ l—m,....,n+1—m,)is a
bijection of S,,. If 77 has index k = 31 ;. 4,1 2"=1=1 then F(rr) has index

Z on—l—i _ Z gn—=l—i _ Z gn=l=i _on=1 _ 4 _}

1<i<n: ¢i=—1 1<i<n 1<i<n: gi=1

(c) Both sides count all n! permutations of S,,.

o 2 ool 2 o (B bt

0<k<2n-1 0<k<2n—2
according to (b).
(e) Add or subtract (c) and (d).

(f) The number of permutations of S, with index 2k=1 4 2k=2 4 ... 4 1 is the same as
the number of permutations of S,, with index L 4 2k=2 4 ... 4 1withi=0o0rl. O
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Note that, by property (f), we have the following Pascal-like triangle

with the nth line

{8}{24_1} {24_1}“'{2"_’%—1}’ if nis odd,
n

{8}"'{2%_1} {2%’1_1}"-{2"_"1_1}, if n is even.

3 Equalities for up-down coefficients

Theorem 1. Ifn > 1, 0 < k < 2" ', m > 1, 0 <1 < 2"L, then the following
identities hold

n+m n+m n+m\ [(m) [n
{ka+l}+{2mk+l+2m—1}=< . ){l}{k} 3.1)
o L R L I (A - R LY I A A PR A I
(3.2)

Here (”;m) denotes the binomial coefficient.

Proof. By (a), there exist Q € {£1}"~! with index k and P € {£1}"~! with index .
Further, we use Niven’s theorem from [11]:

n—+m
[Q,—l,P]+[Q,1,P]=< " )[P][Q].

Rewriting this for indices gives (3.1).

The second equality follows from
[-Q. 1, P1+[-Q.1,P] = (” ;m>[P][—Q] - (” ;m)[P][Q],

since — Q has index 2=l _ 1 — k; see (b). U
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Remark 1. For a fixed &, one can formally consider the map n — {Z} as a polynomial
in n with integer (positive and non-positive) values. So, (3.1) and (3.2) are valid for all

n,meN, k,I eNg.
Corollary 1. The following identities hold:

n+1 n+1]| nl.
2% [ T2k +1 _("“){k}’
n—+2 n n+2| |n+2 n n+2| (n+
4k 4k +2| 7 |4k +1 4k + 3| — 2
n—+3 " n+3| _ |n+3 " n+3| _(n+
8k 8k +4| |8k +3 8k +7( 3
n—+3 n n+3| _|n+3 " n+3 9 n—+
8k +1 8k +5( " |8k +2 8k +6[ 3
n n n\ |m .
bt - G oo

Evidently, since the number of w € S, with the signature (g1, ¢2, . . .

number of = € S, with the signature (g,—1, gn—2, - - -, q1), we have

(3.3)
n .
[l os
n .
{ k} : (3.5)
n .
[
(3.7)

, qn—1) equals the

n n
. = (> (3.8)
oy i B Vg )
where b; are O or 1.
In particular, we have identities
n n
2}1—3 = on— 2 + on— -3 = 3(°
n n
on—4 = on— 2+2n4 = 50 -
such that
n n
{211—t = 2= 2} {211 2+2n (= 2t 2+1} (3.9)
and also
n n
{Zn—l _ 2n—t} = {2t—1 _ 1} , etc. (3.10)
Besides, using (3.7), for 1 <r <t <n — 2, we have
n . n t+1 n
{2t—r+2t}_ (t+l){2t—r}_{2t—r}' (311)
In particular, if # = r, then we find
n _ n r—+1 n| _ n
N R [k B R R B
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In addition, we give another explanation of the triangle in Section 2. For this, we prove

the identity
ny |n+1
<r> —{2r_1}. (3.13)

Indeed, using induction over r, let us find {2,"+T£1}. Takein 3.7 =2"—1, m=r+1.

Then we have
n+1 | (n+l r+1] [n+1
ot T \r 41/ ]2 —1 2 —1f

Note that { rtl } = 1. Therefore, by the inductive supposition, we have

T 0

Another formula of the same type is

(':) = {2,"_1} +1 (3.14)

which follows from (3.1), if we setm = r, k =1 = 0 and replace n by n — r. As a
corollary, from (3.13)—(3.14) we have the equality

{;,tll} = {2,"_1} Y (3.15)

We conclude this section by calculating some partial sums of the up-down coefficients.
By (3.12)—(3.14), we have

3 {Z,_f’_l =21 (3.16)
1<r<n
3 {2,”_1 =2 —n—1; (3.17)
1<r<n
> {2"?4—1 =2"'n—-2)—n’+n+1. (3.18)
1<r<n

It follows from (3.16) that the number of & € S, with exactly one change of sign in their
signature is

n _ n _Aan
21 X2 {zr—1—1}_2 =2 ) {20+21+...+2r—1}_2 4 nz3

1<r<n 1<r<n-2

Theorem 2. For1 <r <n — 1 we have

2"—1

Z{Z}:n(n—l)...(n—r—}-l). (3.19)

k=0
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Proof. Sum (3.16) enumerates the permutations with n — r — 1 fixed down points: 1, 2,
..., n —r — 1. Let us form an arbitrary permutation 7 of such a kind. We start with
position n — r + 1. We can choose the value of ,_,41 by n ways, m,_,42 by n — 1 ways,
...,y by n—(r — 1) ways. Afterthat my > mp > - -+ > m,_, are defined uniquely. Thus,
we obtain the required formula. O

Now, as in the proof of properties (d)—(e), we have

1
3 {Z}z > {Z}:En(n—n.-.(n—rﬂ), 2<r<n—1. (3.20)
0<k<2'—1, 0<k<2"—1,
k even k odd

This generalizes property (e) which corresponds to the case r = n — 1.
Furthermore, note that, using (3.13), for a real x we have

3 {Z”ktll}x’e )3 <Z>xk=(x+l)".

0<k<n 0<k=<n

Thus

n+1 n+1 2n +1
DI A A BRI D A
0<k,l<n 0<m=<2n
Comparing coefficients of x”, we find
2{: n+1 n+1 . 2n+1

k—qf2n k-1~ |2" -1
0<k<n

According to property (b) and (3.10),

n+1 _ n+1 _fn+1
2n—k_l - 2n—1_2n—k - 2k_1 .

This implies the formula

Z n—+1 2 _J2n+1
k—1f T 2n-1]-

0<k<n

4 Inequalities for up-down coefficients

Now we find a series of inequalities for up-down coefficients.

Theorem 3. Ifn >1, 0<k <2"' m>1, 0<1<2""! thenwe have

n+m+1 - n+m+1 ) @1
2M .2k + 1 M2k +1)—1—1)" '
n+2 n+2| .
{ 4k <{4k+1}’ 4.2)
n—+2 n+2 _Jn+2
{ k <{2”—k—l}_{2"+k}' 4-3)
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Proof. There exist two permutations with signature Q € {(£1}"!, index k and P €
{:i:l}’”_l, index /. By Niven’s theorem 5 [11], we have

[0,—-1,—-1,P] < [Q,—-1,1,—P]. 4.4)

Since — P has index 2"~ ! — 1 —I, we get (4.1). The other inequalities are the special cases
P=oand Q = 2. O

Remark 2. One cannot delete the restrictions 0 < k < 2", 0 <1 < 2" 1. eg,
{2%} =-3>-5= {241}; but see (4.2).

Corollary 2. If 0 <k <2" 1, 0<1 < 2" thenwe have

n+m+1 n+m+1
{ s W—b%} (4-5)
n+m+1 n+m+1
{2m+n_2m+l+l < 2m+n_2m_l_l}; (46)
n+m+1 n+m+1
{ 2m+lk < 2m+lk+2m_l}; 4.7
n+m+1 n+m+1 |
2m+lk+2m—l -1 < 2m+lk+2m—1 ’ (48)
2n + 1 2n + 1
{2n+lk+l < 2n+1k+2n_l_l}; 4.9)
n+1 n+1
{%+& < %+Q}; (4.10)
n+1 n+1
{&2“4+k = &2“4—k—1}' @.11)

Remark 3. Note that, by direct computation, one can prove many special inequalities, for

example,
n n .
{4}<{6}’ if n>35,

n n .
{12} > {16}’ if n> 5.

5 Maximal up-down coefficient

Consider the sets of permutations of n elements with a fixed signature. Which of these sets
has the maximal cardinality? De Bruijn [5] mentions that Niven had a proof that it is the
set of the alternating permutations. Unfortunately, Niven never published this statement.
In this section we give a short proof of this remarkable fact. Note that the alternating
permutation x = (71, 72, ..., Ty) € S, with w1 < 7> has index

on=2 Lon—4 ... 40— %(2" —2), ifnisodd,

ky—1 :=
T 2t =L@ - 1), ifnis even.

(5.1)
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Theorem 4. Forn > 1, 0 <k <2" ! we have

=l )

The equality holds if and only ifk = k,_1 ork =2""1 —1 —k,_.

Proof. Let 1 = (my,m,...,7,) € S, with index k. We assume 71 < m, hence
sign m = (1, 42,93, ..., qn—1). Now we use Niven’s inequalities (4.4) and
[0.1,1,P] <[Q,1,—1,—P]. (5.2)

If g» # —1, then we replace it by —1 and, by (5.2) with Q = &, we get
[17 15 q?” DI} Qn—l] < [17 _17 _q?’a DI} _Qn—1]~

Hence we can assume g = —1. If —g3 # 1, then we replace —g3 by 1 and, by (4.4),
we get

(1, -1, -1, —qa4, ..., —qn—1l < [1,-1,1,q4, ..., qn-1l.
So we can continue until we obtain an alternating permutation. If the initial permutation
is not alternating, then we need at least one step and get “<”. Thus we have the equality

only in the case k = k,_1. Note that, in the second case, when we suppose that 71 > 2,
we obtain an alternating permutation with k = 2"~1 — 1 — k,,_. U

Note that the signature of an alternating permutation has the maximal number of changes
of signs. One may expect that {Z} grows together with the number of changes. But this
is wrong. Indeed, consider, e.g., permutations (4, 3,2, 1,5, 6, 7, 8) € Sg with index 23 4+
2242+1=15and (1,8,2,3,4,5,6,7) € Sg with index 20 +2%+23 + 224241 = 95.
The first permutation has only one change, while the latter has two. However, {185} =35>

27 = {985}. If, however, we consider 23 + 2 = 10, then we find {185} =35<323= {180}.
In connection with these examples, we prove the following more general result.

Theorem 5. Letn > 1, 0 <k <2"! 1 <m < n. Then

" < max "
k| = ietm—1,m) inmj2m+k,- ’

Proof. The case m = n — 1 is contained in Theorem 4. Let m < n — 1 and

: k
k = Z a;2! = \\Z_’"J 2" 4 12" o+ .

0<i<n-2

If a,, = 0, we have

= gm0 ol =l
K = L& 12+ (101002 — | 1& 12" +kw |~
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If a,, = 1, then

n n "
{k}S{L—"szJr(mm )}:{LkJ2m+k }
2 2 L -

This proves the theorem. U

Example. n =8, k = 15, m = 3: in the proof a3 = 1, hence {185} < {180}.

If in Theorem 5 we replace n by n + m and k by 2"k + [, then we get

Corollary 3. Letn,m > 1, 0 <k <2" ' 0<1 < 2" Then we have
n—+m - n—+m
2"k + 1| ~ ietm—1,my |2"k + ki |”

6 Up-down coefficients and numbers of Euler and Bernoulli

In 1966, Entringer [7] for the first time indicated a simple connection of the numbers of
alternating permutations with the Bernoulli and Euler numbers. We give a short proof of
this result in our terminology.

Theorem 6. For everyn € N, we have

2n 2n —1
= E , = b .
{an—l} | 2n| { kon—n } | 2n|

Proof. The Euler numbers E», can be defined by their generating function

2n

1
S EnSm = —— xl < 3 (6.1)

—rd (2n)!  cosx

and the Bernoulli numbers by, by

2n 1

> =D"p O = tanx. (6.2)

n>1 )

Using André’s result [2], for the generating function of the up-down coefficients { ko } we
have

n 1
) _1+Z{k,, 1}’; = tanx + —. |x|<%. 6.3)

S X

: T
Separating symmetric and antisymmetric parts, we find for |x| < 5

2n—1

1 2n—1] x
1 - d S _tanx.
+ Z {kzn 1} on)!  cosx " 2 { kon—2 } Qn_n ot

n>1

By comparing the coefficients with (6.1)—(6.2), we get the desired results

2 2n —1
{ " } = (—1)"E2, = |E2l, { " } = (—1)"boy = |b2nl. O
kan—1 kon—2
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Now we are able to get a non-trivial upper estimate for the up-down coefficients.

Theorem 7. Uniformly on k, we have

n 2"t2 — 2)n!
{k}<m, n=1,2,... . (64)
Proof. Asis well known,
5 5 x2n—1
_ n n __
tanx = 272 DIBal s (6.5)

n>1

where By, are Bernoulli numbers which, in contrast to by,, are defined by the generating
function

2n
X X

=1 Boyy——.

a1t > 2n)!
n>1
Comparing with (6.2), we conclude that
22n (22n _ 1)
|ban| = TlBZHL n=172,.... (6.6)

The following inequalities for the Bernoulli and Euler numbers are known ([1], cf. formu-
las 23.1.15):

n!
|E,| < Pl n=2,4,..., (6.7)
1 2(n + 1)!
|Bpt1| < (1—2—”) 2y n=13,... . (6.8)
Multiplying the latter by %, from (6.6) we find
1 "2 — 2)n!
bl <\ T—5= et =13 (6.9)
Since
-2’
by Theorems 4, 6 and formulas (6.6) and (6.9), we have
n @2 -nt 1, (6.10)
kot | S A= 2mmygnr 1T '

and the required estimate follows from Theorem 4. U
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7 Several recurrent relations
There are many linear relations between the Bernoulli and Euler numbers ([9]). According
to Theorem 6, every one leads to a recursion for the maximal up-down coefficients. For

example, if in by, = =1 =3 . _, (2"2:1)E2r we replace by, = (—1)"{2"_1} and E,, =

kon—2
(—1)’{,(22;1}, we get forn > 2
2n - 1 — (_l)n—l + Z (_l)n—r+1 2n - 1 2” (7 1)
k2n—l 2r k2r—l ' ’
1<r<n
In a similar way, using Ep, = 1 + lers” (Zrzfl)bzh we have (kg = 0)
2n 2n 2r — 1
= (=1)" 1" s > 1. 7.2
{k2n—l} D7+ Z =D <2V — 1) { kor—2 } "= 72)
1<r<n

The next two recursions allow to calculate {, " }and {>*~!} independently. We have

2n— kon—1
2n 2n 2r
= (—1)"! 1y ; 7.3
{an—l} DT+ Z D 2r ) |kar-1 73)
1<r<n
2n —1 -1 —r41 2n — 1 2r—1
= (=1)" -t . 7.4
{an—Z} DT+ Z =D <2r—1 kor—2 74
1<r<n
They come from Ez, = — Y o, _, @'r’) Eyrand by, = —1 =3 ., (%;’:})bb corre-
spondingly.
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