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1 Introduction

Euclid’s theorem asserts that there are infinitely many prime numbers. It has numerous
proofs; for example [1] describes the most elegant ones, while [4] gives a more exhaustive
bibliography. We propose a new proof based on the observation that, substantially, the in-
finitude of prime numbers depends on how fast the result of the product grows when its
operands increase. More specifically, we provide an explicit criterion to check the infini-
tude of primes for a class of operations on ℕ, which verifies such growth by computing a
limit (see Theorem 4 and Corollary 5). Then we prove that the criterion is also necessary
under certain conditions (Theorem 6).

2 Over the product

To define a set of operations on ℕ we need to generalize a few notions and to introduce
some terminology (see for example [3]). The set of natural numbers endowed with the
product is a monoid. Moreover such monoid is reduced, atomic and factorial because 1 is

.

Mit der Addition und der Multiplikation natürlicher Zahlen sind wir von Kindesbeinen
an vertraut. ℕ erhält durch das gewöhnliche Produkt die Struktur eines Monoids mit
unendlich vielen Atomen, den Primzahlen. Der Autor des vorliegenden Artikels geht
der Frage nach, ob man ℕ mit einer anderen Produktstruktur ausstatten kann, so dass
ebenfalls ein Monoid mit unendliche vielen Atomen entsteht. Überraschenderweise
existieren unendlich viele derartige Monoidstrukturen auf ℕ. Die Frage ob unendlich
viele Atome existieren wird dabei auf die Berechnung eines Limes reduziert. Dies lässt
den Satz von Euklid über die nicht abbrechende Folge der Primzahlen in neuem Licht
erscheinen.
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the only invertible element, each natural number > 1 is the product of primes and such
factorizations are unique.

More formally, by a monoid we mean a set M with an associative and commutative opera-
tion which has the unit element e and satisfies the cancelation law (if ac = bc, then a = b
for all a, b, c in M).

Let M× be the group of invertible elements of M , then M is reduced if M× = {e}. An
element a ∈ M is an atom if a �∈ M× and a = bc (with b, c ∈ M) implies b ∈ M× or
c ∈ M×. The monoid M is called atomic if every element of M\M× is a finite product
of atoms, while M is factorial if each factorization is unique (up to units and the order of
the factors). An example of an atomic but not factorial monoid is illustrated in the Table 4:
each natural number is a product of the atoms a and b, although the factorizations are not
unique. If M is factorial then we will say that the fundamental theorem of arithmetic holds
for M .

Our aim is to define an infinite class of atomic monoids on ℕ and to provide a condition to
guarantee that a specific monoid has infinitely many atomic elements (Theorem 4). More-
over, we show that the condition is also necessary if the monoid is factorial (Theorem 6).

Now, let us define a set of operations on natural numbers.

Definition 1. Let
⊗

(or
⊗

-product) denote an operation on ℕ such that:

(P1)
⊗

is associative and commutative;

(P2)
⊗

has unit element e;

(P3) if a < b, then a
⊗

c < b
⊗

c for any a, b, c ∈ ℕ.

Notice that the usual product is a
⊗

-product.

Let an = a
⊗ · · · ⊗ a (n times) and a0 = e. From now on we will use underlined bases

to represent
⊗

-powers, otherwise the powers are computed by the normal product.

Let
(
ℕ,

⊗)
denote the set ℕ endowed with the operation

⊗
.

Proposition 2. For any
⊗

-product,
(
ℕ,

⊗)
is a reduced atomic monoid and e = 1.

Proof. According to properties (P1), (P2) and (P3),
(
ℕ,

⊗)
is a monoid. Let us suppose

by contradiction that 1 < e. Then 12 = 1
⊗

1 < e
⊗

1 = 1 < e and there should exist a
strictly decreasing sequence 1, 12, 13, . . . of natural numbers less than e; thus e = 1. The
monoid is reduced because a

⊗
b > a, b if a, b > 1 (by property (P3)).

Finally, to see that the monoid is atomic it suffices to apply the last inequality and to imitate
the usual proof for the standard product (as in [2]). □

3 An infinite class of operations
To prove that there are infinitely many

⊗
-products, below we illustrate an algorithm to

build a generic
⊗

-product. The operation is described by showing how to compute a
⊗

b
for any pair of natural numbers a and b (Table T ), and how to represent each natural
number as a

⊗
-product of atoms (Table N).

Notice that the Table T must be symmetric because
⊗

is commutative, so it is sufficient
to fill only the entries a

⊗
b with a ≤ b.
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To build a
⊗

-product proceed as follows.

Step 1. Fix the atoms, which are written in the Table N , and set n equal to 2.

Step 2. Associate a result k to 2
⊗

n. The number k is selected by picking a number from
the Table N so that the rows and the columns of the Table T remain increasing
sequences (according to property (P3)).

Step 3. The same number k must be the result of all the expressions equivalent to 2
⊗

n
with respect to the associative and the commutative properties. Fill the corre-
sponding entries in the Tables T and N .

Step 4. Increase n by 1 and go back to Step 2.

For example, let a = 2 and b = 4 be the atoms. Then a and b are inserted in the Table N :
see Table 1 and Table 2 (where the atoms are in boldface).

Let us set 2
⊗

2 = 3, and thus a2 = 3. Then we set 2
⊗

3 = 5 (which gives a3 = 5)
and 2

⊗
4 = 6 (a

⊗
b = 6). Next 2

⊗
5 = 7, so a

⊗
a3 = 7; but a

⊗
a3 = a2 ⊗

a2

and therefore also 3
⊗

3 = 7. In the same way we obtain 2
⊗

6 = 3
⊗

4 = 8, since
a

⊗
(a

⊗
b) = a2 ⊗

b, and 2
⊗

7 = 3
⊗

5 = 9 by a
⊗

a4 = a2 ⊗
a3. For the next

step we have 2
⊗

8 = 3
⊗

6 = 5
⊗

4 because a
⊗

(a2 ⊗
b) = a2 ⊗

(a
⊗

b) = a3 ⊗
b.

But the entry 4
⊗

4 (which corresponds to b2) still does not have a value. So, to respect
property (P3), we set 4

⊗
4 = 10 and 2

⊗
8 = 11.

Then the process begins again associating a value to 2
⊗

9.

T 2 3 4 5 6 7 8 9 10 . . .

2 3 5 6 7 8 9 11 12 13 . . .

3 7 8 9 11 12 . . . . . . . . . . . .

4 10 11 13 . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 T gives the results of the
⊗

-product

N 2 3 4 5 6 7 8 9 10 11 . . .

a a2 b a3 a
⊗

b a4 a2 ⊗
b a5 b2 a3 ⊗

b . . .

Table 2 N represents each natural number as a
⊗

-product of atoms

Some remarks.

1. The operation (partially) described in Table 1 and Table 2 is a
⊗

-product and the
corresponding monoid is factorial.

2. Different
⊗

-products can have the same atoms. In fact, if we exchange two numbers
in the Table T (maintaining the rows and the columns increasing) we obtain a new
operation. For example, exchanging 9 with 10 we get another

⊗
-product such that

a5 = 10 and b2 = 9.
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3. The limit lim
n→∞ logn 2n < lim

n→∞ logn(n +1)2 is finite (because each element less than

an has a factorization ar ⊗
bs with r, s < n). This confirms that the monoid has a

finite number of atoms (see Theorem 6).

4. As observed, the above
⊗

-product respects the fundamental theorem of arithmetic.
Otherwise the theorem does not hold if, for example, we set 2

⊗
3 = 2

⊗
4 = 5 (the

new operation is described in Tables 3 and 4). Notice that in any case the sequence
an is strictly monotone for every atom a (because an = am and n > m would imply
an−m = 1, by the cancelation law).

T 2 3 4 5 6 7 8 9 10 11 . . .

2 3 5 5 6 8 8 9 11 11 12 . . .

3 6 6 8 9 9 11 12 12 . . . . . .

4 7 8 9 10 11 12 . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 The fundamental theorem of arithmetic does not hold

N 2 3 4 5 6 7 8 9 10 . . .

a a2 b a3 a4 b2 a5 a6 b3 . . .

a
⊗

b a2 ⊗
b a3 ⊗

b a4 ⊗
b . . .

. . . . . . . . . . . . . . . . . . . . .

Table 4 Same numbers may have more distinct factorizations

For any integer k > 1 we can define a
⊗

-product with atoms 2, 3, . . . , k − 1 and setting
2

⊗
2 = k. Therefore all these operations have different operation-tables T and so they

are distinct. Still, a
⊗

-product satisfies the fundamental theorem of arithmetic (that is(
ℕ,

⊗)
is factorial) if in the Table N different expressions are always associated to distinct

numbers. This occurs if we always choose different results for different expressions 2
⊗

n,
and therefore the rows and the columns of T are strictly increasing sequences.

Summarizing we have the following.

Proposition 3. There exist infinitely many factorial monoids
(
ℕ,

⊗)
.

4 When are there infinitely many atoms?

Fixed a
⊗

-product, to establish if the corresponding monoid has infinitely many atoms
we just need to evaluate a limit.

We will denote by |X | the cardinality of the set X and by [a, b] the natural numbers ≥ a
and ≤ b.



152 Alberto Zorzi

Theorem 4. If lim
n→∞ logn 2n = ∞, then

(
ℕ,

⊗)
contains infinitely many atoms.

Proof. Let A = {n ∈ ℕ : n > 1}. It suffices to show that no finite subset B =
{b1, b2, . . . , br } of A can generate A, that is A\ 〈B〉 �= ∅ if 〈B〉 denotes the infinite set
of all the products of elements in B , that is

〈B〉 = {b1
α1

⊗
· · ·

⊗
br

αr : αi ≥ 0 ∀i, α j > 0 ∃ j}.
For any positive integer m let us consider the powers with bounded exponent, so let

Bm = {b1
α1

⊗
· · ·

⊗
br

αr : 0 ≤ αi ≤ m ∀i, α j > 0 ∃ j}

and set mk = max{n ∈ ℕ : 2n ≤ 10k}. Then

〈B〉
⋂

[2, 10k] = Bmk

⋂
[2, 10k]

for every positive k. Indeed Bmk ⊆ 〈B〉, bmk+1 ≥ 2mk+1 > 10k for each b ∈ B , and
according to property (P3).

The claim is proved if lim
k→∞ logmk

10k = ∞. In fact, in this case, for any positive integer

r there exists a k such that 2(mk + 1)r < m2r
k < 10k when k > k, because mk → ∞ as

k → ∞. So
∣∣Bmk

∣∣ ≤ (mk+1)r < 10k

2 <
∣∣[2, 10k]∣∣ and [2, 10k]\ 〈B〉 = [2, 10k]\Bmk �= ∅,

that is A\ 〈B〉 �= ∅.

What remains is to verify that lim
k→∞ logmk

10k = ∞.

If lim
n→∞ logn 2n = ∞, then lim

mk→∞ logmk
2mk = ∞ and therefore lim

k→∞ logmk
10k = ∞

(because lim
k→∞ mk = ∞ and 2mk ≤ 10k). □

Corollary 5 (Euclid’s theorem). The usual product has infinitely many primes.

Proof. In fact lim
n→∞ logn 2n = ∞. □

The sufficient condition of Theorem 4 is also necessary if the fundamental theorem of
arithmetic holds.

Theorem 6. If the monoid
(
ℕ,

⊗)
is factorial and contains infinitely many atoms, then

lim
n→∞ logn 2n = ∞.

Proof. Let p1, p2, . . . , pm be pairwise distinct atoms. If pi < 2ni for every i , then
p1

α
⊗

p2
α

⊗
. . .

⊗
pm

α < 2αu when α is any positive integer and u = ∑m
i=1 ni . Apply-

ing the fundamental theorem of arithmetic and the property (P3), we see that αm < 2αu .

So logαu 2αu > logαu αm = m
1+logα u , and setting α = u we get logu2 2u2

> m
2 for each m.

This completes the proof because the sequence {2n} is a strictly increasing sequence (it is
seen by induction and applying property (P3)). □
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