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1 Introduction
In this short article we discuss some results from planar Euclidean geometry which have a
close connection to Napoleon’s theorem. They are summarized in Theorem 1. The state-
ment of Theorem 1 appears in [1] where the proof is based on coordinate descriptions and
algebraic computations. Since both Theorem 1 and Napoleon’s theorem (see Theorem 2)
are elementary geometric results, it makes sense to provide a proof that remains in the
same simple geometric domain. For that reason, the arguments presented in the current
paper are entirely in the spirit of synthetic Euclidean geometry and use only geometric
methods with almost no algebraic computations. Thus, one gets a better feeling for the
geometry and the properties of Napoleon configurations.

Definition 1. Let �ABC be an arbitrary triangle. We say that the points A1, B1 and
C1 form a non-overlapping Napoleon configuration for the triangle �ABC if all three
triangles �ABC1, �AB1C and �A1BC are equilateral and no one of them overlaps
with �ABC (see Figure 1). Alternatively, we say that the points A′

1, B ′
1 and C ′

1 form an
overlapping Napoleon configuration for �ABC if all three triangles �ABC ′

1, �AB ′
1C

and �A′
1BC are equilateral and all of them overlap with �ABC.

.

Um den Satz von Napoleon kreisen in der Euklidischen Geometrie zahlreiche Varian-
ten. Bekannt sind etwa die Kiepert-Dreiecke und deren schöne Eigenschaften. Branko
Grünbaum hat 2001 eine besonders ausführliche Version des Satzes von Napoleon for-
muliert, in der zahlreiche neue Eigenschaften der Konfiguration beschrieben werden.
Grünbaum benutzt in seinem Beweis Methoden der analytischen Geometrie. Der Autor
der vorliegenden Arbeit beweist nun Grünbaums Variante des Satzes mit elementaren
Methoden der synthetischen Geometrie, die sich darüberhinaus als besonders anschau-
lich erweisen.
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Fig. 1 A non-overlapping Napoleon configuration and the first part of Napoleon’s theorem.

2 The Main Result
The main result of the current article is the following theorem.

Theorem 1. Let us have an arbitrary triangle �ABC and let A1, B1 and C1 form a
non-overlapping Napoleon configuration for that triangle. Denote the midpoints of B1C1,
C1 A1 and A1B1 by A2, B2 and C2 respectively. Also, denote the centroids of the trian-
gles �A1BC, �AB1C and �ABC1 by G1, G2 and G3 respectively. Then the following
statements are true:

1. The triangles �A2B2C,�AB2C2 and �A2BC2 are equilateral;

2. The centroids A∗, B∗,C∗ of �AB2C2,�A2B2C,�A2BC2 respectively are vertices
of an equilateral triangle, whose centroid coincides with the centroid G of �ABC;

Similarly, let A′
1, B ′

1 and C ′
1 be an overlapping Napoleon configuration for �ABC. De-

note the midpoints of B ′
1C

′
1,C ′

1 A′
1 and A′

1B ′
1 by A′

2, B ′
2 and C ′

2 respectively. Also, denote
the centroids of triangles �A′

1BC,�AB ′
1C and �ABC ′

1 by G′
1, G′

2 and G′
3 respectively.

Then

3. The triangles �A′
2B ′

2C,�AB ′
2C

′
2 and �A′

2BC ′
2 are equilateral;

4. The centroids A∗∗, B∗∗,C∗∗ of �AB ′
2C

′
2,�A′

2BC ′
2,�A′

2B ′
2C respectively are ver-

tices of an equilateral triangle, whose centroid coincides with the centroid G of
�ABC;
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5. Triangle �A∗B∗C∗ is homothetic to the triangle �G′
1G

′
2G

′
3 with homothetic center

G and a coefficient of similarity −1/2;
6. Triangle �A∗∗B∗∗C∗∗ is homothetic to the triangle �G1G2G3 with homothetic cen-

ter G and a coefficient of similarity −1/2.

7. The area of �ABC equals four times the algebraic sum of the areas of �A∗B∗C∗
and �A∗∗B∗∗C∗∗.

3 Napoleon’s Theorem

Napoleon’s theorem is a beautiful result from planar Euclidean geometry and there are
various ways to prove it. In order to make this article more self-contained, we present one
possible geometrically oriented proof. Before we state and prove Napoleon’s theorem we
are going to need the following lemma.

Lemma 1. Given an arbitrary triangle �ABC, let A1, B1 and C1 form a non-overlapping
Napoleon configuration for that triangle. Then, the following properties are true:

1. The segments AA1, BB1 and CC1 are of equal length. In other words, AA1 =
BB1 = CC1;

2. They intersect at a common point, denoted by J ;
3. ∡AJ B = ∡B JC = ∡C J A = 120◦;
4. The circles K1, K2 and K3 circumscribed around the equilateral triangles �A1BC,

�AB1C and �ABC1 respectively pass through the point J (see Figure 2).

Proof. Perform a 60◦ rotation RA around the point A in counterclockwise direction. Since
AC = AB1 and ∡C AB1 = 60◦, the point C is mapped to the point B1. Similarly, C1
is mapped to B. Therefore the segment CC1 maps to the segment B1B. This implies that
BB1 = CC1 (see Figure 2). Moreover, if we denote by J the intersection point of BB1
and CC1, then ∡C J B1 = ∡C1 J B = 60◦ and ∡B JC = 180◦ −∡C J B1 = 180◦ −60◦ =
120◦. We are going to show that the points A, J and A1 lie on the same line.

Notice that ∡C J B1 = ∡C AB1 = 60◦. Therefore the quadrilateral CB1 AJ is inscribed
in a circle K2. Then, ∡C J A = 180◦ − ∡AB1C = 180◦ − 60◦ = 120◦. Since ∡B JC +
∡C A1B = 120◦ + 60◦ = 180◦, the points B, A1,C and J lie on a circle K1. From here
we can conclude that ∡A1 JC = ∡A1BC = 60◦. Then, ∡A1 J A = ∡A1 JC + ∡C J A =
60◦ + 120◦ = 180◦. That means that J belongs to the straight line AA1.

If we perform another 60◦ counterclockwise rotation RB , this time around the point B,

it will turn out that AA1 is mapped to C1C. Therefore, AA1 = CC1. Also, ∡AJ B =
360◦ − ∡B JC − ∡C J A = 360◦ − 120◦ − 120◦ = 120◦. Since ∡AJ B + ∡BC1A =
120◦ + 60◦ = 180◦, the points A,C1, B and J lie on a circle K3. We see that the circles
K1, K2, K3 all pass through the same point J. This completes the proof of Lemma 1. □

Remark. The point J from Lemma 1 (see also Figure 2) is often called Fermat point or
alternatively Torricelli point.
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Fig. 2 Constructions in the proof of Lemma 1.

Next, we are ready to state and prove Napoleon’s theorem.

Theorem 2. Let �ABC be an arbitrary triangle and let G be its centroid. Then, the
following statements are true:

1. Assume A1, B1 and C1 form a non-overlapping Napoleon configuration for that
triangle. Denote the centroids of the triangles �A1BC, �AB1C and �ABC1 by
G1, G2 and G3 respectively. Then, the triangle �G1G2G3 is equilateral with a
centroid coinciding with the point G;

2. Let A′
1, B ′

1 and C ′
1 form an overlapping Napoleon configuration for that triangle.

Denote the centroids of triangles �A′
1BC, �AB ′

1C and �ABC ′
1 by G′

1, G′
2 and G′

3
respectively. Then, the triangle �G′

1G
′
2G

′
3 is equilateral with a centroid coinciding

with the point G;
3. The area of �ABC equals the algebraic sum of the areas of �G1G2G3 and

�G′
1G

′
2G

′
3.

Proof. We start with the first claim of the theorem (see also Figure 3). Let M1, M2 and
M3 be the midpoints of the edges BC,C A and AB respectively. Since G is the centroid
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Fig. 3 Constructions in the proof of Napoleon’s theorem.

of �ABC and G2 is the centroid of �AB1C, we have the ratios M2G : M2B = M2G2 :
M2B1 = 1 : 3. Therefore, by the intercept theorem GG2 = 1

3 BB1 and GG2 is parallel
to BB1. Analogously, GG1 = 1

3 AA1, GG1 is parallel to AA1, GG3 = 1
3CC1 and GG3

is parallel to CC1. By part 1 of Lemma 1, AA1 = BB1 = CC1, hence GG1 = GG2 =
GG3. By part 3 of Lemma 1, ∡AJ B = ∡B JC = ∡C J A = 120◦, so ∡G1GG2 =
∡G2GG3 = ∡G3GG1 = 120◦.
We can conclude form here that �G1G2G ∼= �G2G3G ∼= �G3G1G and hence G1G2 =
G2G3 = G3G1, that is, the triangle �G1G2G3 is equilateral.

The proof of claim 2 from Napoleon’s theorem is analogous to the proof of claim 1. We
just have to consider overlapping configurations and rename their notations appropriately.

In order to prove claim 3 form Theorem 2, we are going to show that Area(�G1G2G3) =
1
2 Area(�ABC)+ 1

6 (Area(�A1BC) + Area(�AB1C) + Area(�ABC1)). Let point P be
the reflection image of the vertex C with respect to the line G1G2. In other words, P is
chosen so that G1G2 is the perpendicular bisector of C P. Hence, �G1G2C ∼= �G1G2P
and G2P = G2C = G2 A. If we denote ∡G1G2C = α then ∡PG2G1 = α. On the
one hand, ∡AG2P = ∡AG2C − ∡PG2C = 120◦ − ∡PG2C = 120◦ − (∡PG2G1 +
∡G1G2C) = 120◦ − 2α. On the other hand, ∡G3G2P = ∡G3G2G1 − ∡PG2G1 =
60◦ − α. Therefore, ∡AG2G3 = ∡AG2P − ∡G3G2P = 120◦ − 2α − (60◦ − α) =
60◦ − α. Since G2P = G2A and ∡AG2G3 = ∡G3G2P = 60◦ − α, the line G2G3 is the
bisector of ∡AG2P in the isosceles triangle �AG2P, and hence it is the perpendicular
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Fig. 4 Constructions in the proof of Napoleon’s theorem.

bisector of the segment AP. Therefore, P is the reflection image of A with respect to
G2G3 and �G2G3A ∼= �G2G3P. Analogously, we can show that the reflection of B
with respect to G3G1 is again P and �G3G1B ∼= �G3G1P. All of the arguments above
lead to the conclusion that Area(�G1G2G3) = Area(�G1G2P) + Area(�G2G3P) +
Area(�G3G1P) = Area(�G1G2C) + Area(�G2G3A) + Area(�G3G1B), so

Area(�G1G2G3) = 1

2
Area(AG3BG1CG2).

Notice that Area(AG3BG1CG2) = Area(�ABC) + Area(�AG3B) + Area(�BG1C) +
Area(�CB2 A) = Area(�ABC)+ 1

3 (Area(�A1BC)+Area(�AB1C)+Area(�ABC1)).

It follows from here that Area(�G1G2G3) = 1
2 Area(�ABC) + 1

6 (Area(�A1BC) +
Area(�AB1C) + Area(�ABC1)).

Using analogous arguments, one can show that Area(�G′
1G

′
2G

′
3) = 1

2 Area(�ABC) −
1
6 (Area(�A′

1BC) + Area(�AB ′
1C) + Area(�ABC ′

1)). Now, we can deduce that

Area(�G1G2G3) + Area(�G′
1G

′
2G

′
3) = Area(�ABC).

An additional observation is that G1P = G1B = G1C = G1 A1 and therefore P lies on
the circle K1, circumscribed around �A1BC (see Lemma 1 and Figure 2). Similarly, P
lies on the circles K2 and K3 circumscribed around �AB1C and �ABC1 respectively.
That implies that P is the intersection point of K1, K2 and K3, which was already denoted
by J , i.e., P ≡ J. □
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4 Proof of Theorem 1

This section contains the proof of the main result, namely Theorem 1. To prove this
statement we are going to use several lemmas and corollaries which together will give us
the desired result.

The next lemma is essentially the proof of fact 1 from Theorem 1.
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Fig. 5 Constructions in the proof of Lemma 2.

Lemma 2. In the setting of Theorem 1, the points A2, B2 and C form an equilateral
triangle (see Figure 5).

Proof. Consider a 60◦ rotation RC around the point C in counterclockwise direction. The
point B1 maps to A. Denote by C∗

1 the image of the point C1 (Figure 5). Then, B1C1 maps
to AC∗

1 . We are going to show that the point B2 is the image of A2 under the rotation RC .

Since the midpoint A2 of B1C1 maps to the midpoint of the image AC∗
1 , we need to prove

that B2 lies on AC∗
1 and is the midpoint of that segment.

By the properties of the rotation RC , we have that CC1 = CC∗
1 and ∡C1CC∗

1 = 60◦.
Therefore triangle �CC1C∗

1 is equilateral and so by Lemma 1 we can deduce that C1C∗
1 =

CC1 = AA1.

Notice that the point A1 is the image of B under the rotation RC . Since C1 maps to C∗
1 we

have that BC1 maps to A1C∗
1 . Thus, A1C∗

1 = BC1 = AC1.

The facts that CC1 = AA1 and A1C∗
1 = AC1 imply that the quadrilateral AA1C∗

1C1
is a parallelogram. For any parallelogram, the intersection point of the diagonals is the
midpoint for both diagonals. That means that the midpoint B2 of the diagonal C1 A1 lies
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on the diagonal AC∗
1 and is the midpoint of AC∗

1 . Therefore, B2 is the image of A2 under
the rotation RC . Hence, C A2 = CB2 and ∡A2CB2 = 60◦, i.e., the triangle �A2B2C is
equilateral. □

We are going to need the following intermediate statement.

Lemma 3. Consider the equilateral triangle �ABC ′
1, overlapping �ABC. Then, the

midpoint C2 of the segment A1B1 is also the midpoint of CC ′
1 (see Figure 6).

B
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C
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C1
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A

A

1

Fig. 6 Constructions in the proof of Lemma 3.

Proof. Consider a 60◦ degree clockwise rotation around the point A. Then B maps to C ′
1

and C maps to B1. Therefore the segment BC maps to the segment C ′
1B1, so BC = C ′

1B1.

Now consider a 60◦ degree counter-clockwise rotation around the point B. In this case A
maps to C ′

1 and C maps to A1. Thus, the segment AC maps to C ′
1 A1, so AC = C ′

1 A1.

From the two identities BC = C ′
1B1 and AC = C ′

1 A1 it can be concluded that the quadri-
lateral B1C ′

1 A1C is a parallelogram. Therefore, the midpoint C2 of the diagonal A1B1 is
also the midpoint of the diagonal CC ′

1. □

Next, we are going to locate the centroids of �A1B1C1 and �A2B2C2.

Lemma 4. The centroids of �A1B1C1 and �A2B2C2 coincide with the centroid G of
�ABC (see Figure 7).
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Fig. 7 Constructions in the proof of Lemma 4.

Proof. Let M2 be the midpoint of AC. Then M2C2 is a mid-segment of the triangle
�AC ′

1C. Therefore, M2C2 is parallel to AC ′
1 and 2M2C2 = AC ′

1. Since triangles �ABC1
and �ABC ′

1 are equilateral, the quadrilateral AC1BC ′
1 is a rhombus, so AC ′

1 = C1B and
AC ′

1 is parallel to C1B. Hence M2C2 is parallel to C1B and 2M2C2 = C1B. Let G′ be
the intersection point of BM2 and C1C2. From here we can deduce that BG′ : G′M2 =
C1G′ : G′C2 = BC1 : C2M2 = 2 : 1. But for the centroid G of �ABC it is true that
BG : GM2 = 2 : 1, so G ≡ G′ and G is the centroid of �A1B1C1. Since the triangles
�A1B1C1 and �A2B2C2 have a common centroid, the statement is proved. □

The following corollary proves statements 1 and 2 from Theorem 1.

Corollary 1. The points A, B and C form an overlapping Napoleon configuration
for �A2B2C2. Moreover, the centroids A∗, B∗,C∗ of the equilateral triangles �AB2C2,
�A2BC2 and �A2B2C respectively form an equilateral triangle, whose centroid coin-
cides with the centroid G of �ABC.

Proof. By Lemma 2, first applied to the triple A, B2,C2, then to the triple A2, B,C2,
and finally to the triple A2, B2,C , we obtain the first statement of Corollary 1. Thus, the
points A, B and C form an overlapping Napoleon configuration for �A2B2C2. By the
classical Napoleon’s theorem for overlapping configurations, it follows that the centroids
A∗, B∗,C∗ of �AB2C2,�A2BC2 and �A2B2C respectively form an equilateral triangle
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whose centroid coincides with the centroid of �A2B2C2. By Lemma 4, the centroid of
�A2B2C2 coincides with the centroid G of �ABC. The corollary is proved. □

Notice that the proof of the statements 3 and 4 from Theorem 1 is absolutely analogous to
the proof of the statements 1 and 2. All we have to do is to follow more or less the same
arguments, just changing the notation appropriately. What is left is the verification of the
last three claims from Theorem 1. We proceed with the following lemma:

Lemma 5. Consider the centroids C∗ and G′
3 of the equilateral triangles �A2B2C and

�ABC ′
1 respectively. Then G′

3 maps to C∗ under a homothetic transformation of dilation
factor −1/2 with respect to the centroid G of �ABC (see Figure 8).
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Fig. 8 Constructions in the proof of Lemma 5.

Proof. Perform a homothetic transformation of dilation factor −1/2 with respect to the
centroid G of �ABC. By Lemma 4 the point G is also the centroid of �A1B1C1. Then
A1B1 maps to A2B2 and so the midpoint C2 of A1B1 maps to the midpoint C3 of A2B2.

Also, the vertex C maps to the midpoint M3 of AB because G is the centroid of �ABC
(see Figure 8). From here we can conclude that C3G : GC2 = 1 : 2 and M3G : GC =
1 : 2 which transforms into C3G : C3C2 = 1 : 3 and M3G : M3C = 1 : 3. As C∗ is the
centroid of �A2B2C, we can see that C3C∗ : C3C = C3G : C3C2 = C∗G : CC2 = 1 : 3
and C∗G is parallel to CC2. Similarly, G′

3 is the centroid of �ABC ′
1, so M3G′

3 : M3C ′
1 =
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M3G : M3C = G′
3G : C ′

1C = 1 : 3 and G′
3G is parallel to C ′

1C. By Lemma 3, C2 is the
midpoint of CC ′

1 which means that both GC∗ and GG′
3 are parallel to the same line CC2.

Therefore G belongs to C∗G′
3. Moreover, C∗G = 1

3CC2 = 1
6CC ′

1 and G′
3G = 1

3CC ′
1.

Hence C∗G : GG′
3 = 1 : 2, so the point C∗ is the image of the point G′

3 under the
homothetic transformation of factor −1/2 with respect to G. □

After establishing the previous result, we are ready to confirm the validity of statements 5,
6 and 7 from Theorem 1.

Corollary 2. In the setting of Theorem 1, triangle �A∗B∗C∗ is homothetic to the triangle
�G′

1G
′
2G

′
3 with a homothetic center G and a coefficient of similarity −1/2. Similarly,

triangle �A∗∗B∗∗C∗∗ is homothetic to the triangle �G1G2G3 with a homothetic center
G and a coefficient of similarity −1/2. Moreover, the area of �ABC equals four times the
algebraic sum of the areas of �A∗B∗C∗ and �A∗∗B∗∗C∗∗.

Proof. Applying Lemma 5 first to the pair of centroids C∗ and G′
3 of the equilateral tri-

angles �A2B2C and �ABC ′
1, then to the centroids A∗ and G′

1 of the equilateral triangles
�AB2C2 and �A′

1BC, and finally to the centroids B∗ and G′
2 of the equilateral triangles

�A2BC2 and �AB ′
1C, we conclude that triangle �A∗B∗C∗ is homothetic to the triangle

�G′
1G

′
2G

′
3 with respect to G and a dilation coefficient −1/2. Analogously, the same is

true for the equilateral triangles �A∗∗B∗∗C∗∗ and �G1G2G3. Finally, due to the homo-
thety, the area of �A∗B∗C∗ is 1/4 of the area of �G′

1G
′
2G

′
3 and the area of �A∗∗B∗∗C∗∗

is 1/4 of the area of �G1G2G3. Since by Napoleon’s theorem the area of �ABC equals
the algebraic sum of the areas of �G1G2G3 and �G′

1G
′
2G

′
3, we conclude that the area of

�ABC equals four times the algebraic sum of the areas of �A∗B∗C∗ and �A∗∗B∗∗C∗∗.
This completes the proof of the corollary. □
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