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1 Formulating the problems and setting the notation

Suppose a researcher draws a sample X1, X2, . . . , Xm from some population, and com-
putes the corresponding variance in it. This in order to estimate the variance of the pop-
ulation from which the sample was drawn. Assume that the population in question has
a Gaußian probability distribution. A second researcher draws, independently, a sample
Y1,Y2, . . . ,Yn from the same population. He computes not only the corresponding vari-
ance in the sample, but also surrounds it by margins such as to get a 95% confidence
interval for the population variance. Then what is the probability that this 95% confidence
interval, generated by Y1,Y2, . . . ,Yn , will cover the sample variance of X1, X2, . . . , Xm?
Below this probability will be denoted by Pm

n . As a second coverage problem, what is the
probability that the 95% confidence interval generated by the X1, X2, . . . , Xm and that by
the Y1,Y2, . . . ,Yn are disjoint? Below this probability will be denoted by Qm

n . The aim

.

Zieht man zwei unabhängige Stichproben aus einer Grundgesamtheit mit Varianz σ 2,
so kann man sich fragen, mit welcher Wahrscheinlichkeit das aus der zweiten Stichpro-
be gewonnene Vertrauensintervall für σ 2 den Wert der empirischen Varianz der ersten
Stichprobe enthält. In ähnlicher Weise lässt sich fragen, wie gross die Wahrscheinlich-
keit ist, dass die Vertrauensintervalle der beiden Stichproben für die Varianz disjunkt
sind. In der vorliegenden Arbeit werden diese Fragen beantwortet für den Fall einer
normalverteilten Grundgesamtheit. Insbesondere umfasst die Antwort jeden Stichpro-
benumfang und die entsprechende Asymptotik. Die Resultate werden angewandt auf
statistische Tests, bei welchen die Überlappung der Vertrauensintervalle als Entschei-
dungskriterium dient.
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of this paper is to get expressions for the values that can be taken on by Pm
n and Qm

n and
to get insight in their asymptotic behaviour. Of course one could also think about similar
coverage problems when estimating the mean of a population rather than its variance. This
has been studied in some detail in [9]. In the following, as a kind of a surprise, it will
turn out that, asymptotically, the coverage probabilities Pn

n and Qn
n are the same as their

counterparts when estimating the mean.

2 Estimating the variance of a population
Let X1, X2, . . . , Xm be a sample from a population with variance σ 2. This variance σ 2 is
then usually estimated through the so-called sample variance S2, which is defined as

S2 = (X1 − X̄)2 + (X2 − X̄)2 + · · · + (Xm − X̄)2

m − 1
.

In the above the expression X̄ stands for the sample mean, that is to say

X̄ = X1 + X2 + · · · + Xm

m
.

When sampling from a Gaußian population the random variables X̄ and S2 are statisti-
cally independent (see for example [7], [8]). By exploiting this result it can be proved that
(m − 1)S2/σ 2 has a so-called χ2-distribution with m − 1 degrees of freedom. Generally a
χ2-distribution with n degrees of freedom is defined as being the probability distribution
of a random variable of type

Z2
1 + Z2

2 + · · · + Z2
n

where the Z1, Z2, . . . , Zn are independent random variables having a Gaußian distribu-
tion with mean 0 and variance 1. The fact that (m − 1)S2/σ 2 has a χ2-distribution with
m − 1 degrees of freedom may be exploited to construct interval estimates at a prescribed
coverage γ . To be more explicit in this, denote the quantile function of a χ2-distribution
with m degrees of freedom by qm . Then, when using intervals with endpoints

(m − 1) S2

qm−1
[ 1

2 (1 + γ )
] and

(m − 1) S2

qm−1
[ 1

2 (1 − γ )
]

the probability that they will cover the variance σ 2 of the population is precisely γ . Note
that the number γ is in this context often referred to as the confidence level of the interval
estimate. See for example [7] or [16] for more details in all this.

When drawing two samples X1, X2, . . . , Xm and Y1,Y2, . . . ,Yn one may compute their
variances S2

X and S2
Y and compare them by computing their quotient S2

X/S2
Y . If the sam-

ples are drawn from the same Gaußian population then this quotient S2
X/S2

Y has a so-called
F-distribution with m − 1 and n − 1 degrees of freedom in the numerator and denominator
respectively. Generally an F-distribution with m and n degrees of freedom in the numera-
tor and denominator is defined as being the probability distribution of a random variable
of type

U/m

V/n
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where U and V are independent variables having a χ2-distribution with m and n degrees
of freedom respectively. In the following such an F-distribution will be briefly referred
to as an Fm

n -distribution. Its cumulative distribution function will be denoted as Fm
n . The

families of F-distributions and χ2-distributions play an important role in mathematical
statistics (see for example [7]). In the following sections they will also play the central
part in capturing the coverage probabilities Pm

n and Qm
n in explicit expressions.

As a last notational convention, in the sections that follow the Greek capital � will stand
for the cumulative distribution function of a standard Gaußian distribution, that is to say, a
Gaußian distribution with mean 0 and variance 1. The quantile function of this distribution,
that is the inverse of �, will be denoted by q .

3 A solution to the first coverage problem
Let X1, X2, . . . , Xm and Y1,Y2, . . . ,Yn be independent samples from the same Gaußian
population. As in the previous section, denote their corresponding sample variances by
S2

X and S2
Y respectively. Then the endpoints of a confidence interval with coverage γ ,

generated by the sample Y1,Y2, . . . ,Yn , are

(n − 1) S2
Y

qn−1
[1

2 (1 + γ )
] and

(n − 1) S2
Y

qn−1
[1

2 (1 − γ )
] . (1)

This interval will fail to cover the sample variance S2
X if either

S2
X <

(n − 1) S2
Y

qn−1
[ 1

2 (1 + γ )
] or

(n − 1) S2
Y

qn−1
[ 1

2 (1 − γ )
] < S2

X .

These two events exclude each other. Exploiting the fact that S2
X/S2

Y has an Fm−1
n−1 -distribu-

tion, it is straightforward to derive that the probability that the interval given by (1) does
not cover S2

X is given by

1 − Pm
n (γ ) = Fm−1

n−1

(
n − 1

qn−1
[1

2 (1 + γ )
]
)

+ 1 − Fm−1
n−1

(
n − 1

qn−1
[ 1

2 (1 − γ )
]
)

.

It follows that

Pm+1
n+1 (γ ) = Fm

n

(
n

qn
[ 1

2 (1 − γ )
]
)

− Fm
n

(
n

qn
[ 1

2 (1 + γ )
]
)

. (2)

Table 1 below shows the probabilities Pm
n for a couple of values for m and n in a scenario

where the coverage γ is set to 0.95. The probabilities are presented as percentages.

As to the asymptotics of the Pm
n (γ ), one has

lim
m→∞ Pm

n (γ ) = γ for all n and lim
n→∞ Pm

n (γ ) = 0 for all m.

These limits allow for easy intuitive explanations. The value of the left limit may be per-
ceived as follows. With increasing m the S2

X converge (strongly) to σ 2
X . So the probability
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m → 3 5 10 20 50 100 500 ∞
n = 3 76.2 85.2 90.7 93.1 94.3 94.7 94.9 95

n = 5 68.1 79.6 87.8 91.7 93.8 94.4 94.9 95

n = 10 55.5 69.3 81.6 88.4 92.5 93.8 94.8 95

n = 20 42.4 56.6 72.0 82.6 90.0 92.6 94.5 95

n = 50 28.1 39.5 55.1 69.4 83.1 88.9 93.8 95

n = 100 20.1 29.0 42.2 56.4 73.8 83.3 92.6 95

n = 500 9.0 13.3 20.2 29.0 44.1 57.4 83.4 95

n = ∞ 0 0 0 0 0 0 0 ∗
Table 1

that the confidence interval, at coverage γ , generated by the Y1,Y2, . . . ,Yn , will cover S2
X

may be expected to converge to the probability that it will cover σ 2
X . The latter probabil-

ity, however, is γ by construction. As to the limit on the right, note that with increasing
n the confidence intervals generated by the Y1,Y2, . . . ,Yn shrink to the singleton {σ 2

Y }.
So the probability that these intervals will cover S2

X may be expected to converge to the
probability that the singleton {σ 2

Y } will cover S2
X . The latter is precisely the probability that

S2
X = σ 2

Y , which is 0 because S2
X has a continuous distribution.

Besides these two limits there is a limit of the Pm
n when walking along the diagonal of the

table given above. To be more precise, it will turn out that the limit

lim
n→∞ Pn

n (γ )

exits and that it is equal to the limit of the Pn in [9], where corresponding coverage prob-
lems were studied in the estimation of a population mean. In §6 this result will be proved
through analytic derivation.

4 A solution to the second coverage problem

In this section, for reasons that will become apparent in the last section, the second cov-
erage problem will be solved in a slightly more general setting than proposed earlier.
Namely, it will be assumed that the samples X1, X2, . . . , Xm and Y1,Y2, . . . ,Yn are drawn
from Gaußian populations with variances σ 2

X and σ 2
Y respectively. By assuming this the

endpoints of the confidence interval for the population variance generated by the Y1, Y2,
. . ., Yn are

(n − 1) S2
Y

qn−1
[ 1

2 (1 + γ )
] and

(n − 1) S2
Y

qn−1
[1

2 (1 − γ )
] .

Similarly, the endpoints of the interval generated by the X1, X2, . . . , Xm are

(m − 1) S2
X

qm−1
[ 1

2 (1 + γ )
] and

(m − 1) S2
X

qm−1
[1

2 (1 − γ )
] .
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The two intervals are disjoint if either

(m − 1) S2
X

qm−1
[ 1

2 (1 − γ )
] <

(n − 1) S2
Y

qn−1
[ 1

2 (1 + γ )
]

or
(n − 1) S2

Y

qn−1
[ 1

2 (1 − γ )
] <

(m − 1) S2
X

qm−1
[1

2 (1 + γ )
] .

It follows that, denoting the quotient σY /σX by ρ, the probability Qm+1
n+1 (γ, ρ) is given by

Qm+1
n+1 (γ, ρ) = Fm

n

(
ρ2 n

m

qm
[ 1

2 (1 − γ )
]

qn
[1

2 (1 + γ )
]
)

+ Fn
m

(
1

ρ2

m

n

qn
[1

2 (1 − γ )
]

qm
[ 1

2 (1 + γ )
]
)

. (3)

Table 2 below shows the probabilities Qm
n for a couple of values for m and n in a scenario

where the coverage γ is set to 0.95 and the ratio ρ equal to 1. As in the previous section,
the probabilities are presented as percentages.

m → 3 5 10 20 50 100 500 ∞
n = 3 1.363 1.282 1.456 1.776 2.331 2.803 3.783 5

n = 5 1.282 1.012 1.015 1.252 1.765 2.251 3.386 5

n = 10 1.456 1.015 0.768 0.811 1.154 1.576 2.800 5

n = 20 1.776 1.252 0.811 0.657 0.774 1.056 2.186 5

n = 50 2.331 1.765 1.154 0.774 0.596 0.664 1.427 5

n = 100 2.803 2.251 1.576 1.056 0.664 0.577 0.980 5

n = 500 3.783 3.386 2.800 2.186 1.427 0.980 0.561 5

n = ∞ 5 5 5 5 5 5 5 ∗
Table 2

For the Qm
n , when ρ is set to 1, one has

lim
m→∞ Qm

n (γ, 1) = 1 − γ for all n and lim
n→∞ Qm

n (γ, 1) = 1 − γ for all m.

The two limits above allow for an easy intuitive explanation. Namely, with increasing m
the confidence intervals generated by the sample X1, X2, . . . , Xm shrink to the singleton
{σ 2

X }. The probability that a confidence interval at coverage γ , generated by a sample
Y1,Y2, . . . ,Yn , will be disjoint from this singleton is the complement of the probability
that the interval will cover the number σ 2

X . Thus one arrives at the value 1 − γ for the two
limits above.

Besides these two intuitively clear limits it will turn out that there is a limit of the Qm
n

along the diagonal of the table given above. More precisely, the limit

lim
n→∞ Qn

n(γ, 1)

exists and is equal to the limit of the Qn in [9], where the same coverage problem was
dealt with when estimating the mean of a population. This result will be proved in §7.
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5 Some preparatory asymptotics

In order to study the behaviour of the probabilities Pn
n and Qn

n for large n one needs to
know something about the asymptotic behaviour of the distribution functions Fn

n and that
of the quantile functions qn . The theorems in this section will prove to be useful in this.
In the derivations a special convergence feature of cumulative distribution functions will
be exploited several times. If, namely, a sequence F1, F2, F3, . . . of cumulative distribu-
tions converges pointwise to a continuous distribution function F then the convergence is
automatically uniform. See for example [7] for a proof of this phenomenon.

The asymptotics needed will be derived by starting from so-called infinite samples

X1, X2, X3, . . .

from a population with a standard Gaußian probability distribution. This is to say that the
X1, X2, X3, . . . form a statistically independent system and that they all have a standard
Gaußian probability distribution. Note that for such Xi the expectation value and variance
of X2

i is 1 and 2 respectively (see for example [7]). It follows from this that for all n =
1, 2, 3, . . . the sums Zn , defined as

Zn = X2
1 + X2

2 + · · · + X2
n − n√

2n
,

have an expectation value equal to 0 and a variance equal to 1. In the following the cumu-
lative distribution function of Zn will be denoted by �n and its quantile function by q̄n .
Recall that the cumulative distribution function of the standard Gaußian distribution was
convened to be denoted by � and its quantile function by q . In these notations one has:

Lemma 1. The �n converge on ℝ uniformly to � and the q̄n on the interval (0, 1) point-
wise to q .

Proof. By the central limit theorem (see [2], [7]) the �n converge on ℝ pointwise to �.
The latter distribution function being continuous, this convergence is uniform. Exploiting
the uniform convergence, together with the fact that � has a positive derivative that is
locally bounded away from zero, one derives that the q̄n converge pointwise to q . The
necessary mathematical tools in this can be found for example in [11]. □

The following theorem describes an asymptotic feature of F-distributions by connecting
them to a standard Gaußian distribution.

Theorem 2. For all x ∈ ℝ one has

lim
n→∞ Fn

n

(
1 + x√

n

)
= �

(x

2

)
.

The convergence is uniform in x .

Proof. Let
X1, X2, X3, . . . and Y1,Y2,Y3, . . .
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be two independent infinite samples from a standard Gaußian distribution. Define the ran-
dom variables Zn(X) and Zn(Y ) as

Zn(X) = X2
1 + X2

2 + · · · + X2
n − n√

2n

and

Zn(Y ) = Y 2
1 + Y 2

2 + · · · + Y 2
n − n√

2n
.

Now the Zn(X) and Zn(Y ) are identically distributed; they both have �n as their cumula-
tive distribution function. Denote their probability density by ϕn . Then, in these notations,
applying the law of total probability (see for example [7]), one has

Fn
n

(
1 +

√
2
n x
)

= Pr

(
X2

1 + X2
2 + · · · + X2

n

Y 2
1 + Y 2

2 + · · · + Y 2
n

≤ 1 +
√

2
n x

)

=
∫ +∞

−∞
Pr

(
X2

1 + X2
2 + · · · + X2

n

Y 2
1 + Y 2

2 + · · · + Y 2
n

≤ 1 +
√

2
n x

∣∣∣∣ Zn(Y ) = s

)
ϕn(s) ds

=
∫ +∞

−∞
Pr

(
X2

1 + X2
2 + · · · + X2

n

s
√

2n + n
≤ 1 +

√
2
n x

)
ϕn(s) ds

=
∫ +∞

−∞
Pr

(
X2

1 + X2
2 + · · · + X2

n − n√
2n

≤ x + s +
√

2
n xs

)
ϕn(s) ds

=
∫ +∞

−∞
Pr

(
Zn(X) ≤ x + s +

√
2
n xs

)
ϕn(s) ds

=
∫ +∞

−∞
�n

(
x + s +

√
2
n xs

)
ϕn(s) ds.

Now define the functions εn as

εn(x) =
∫ +∞

−∞

[
�n

(
x + s +

√
2
n xs

)
− �n (x + s)

]
ϕn(s) ds .

By exploiting the fact that �n → � uniformly one derives that

lim
n→∞ εn(x) = 0 for all x ∈ ℝ .

In terms of the εn one may write

Fn
n

(
1 +

√
2
n x
)

= εn(x) +
∫ +∞

−∞
�n (x + s) ϕn(s) ds

= εn(x) +
∫ +∞

−∞
�n (x − s) ϕn(−s) ds.

(4)
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The last integral on the right side is the convolution product of the function �n and the
function s �→ ϕn(−s), the latter being the probability density of the random variable
−Zn(Y ). Thus, regarding it as a function of x , the integral presents the cumulative distri-
bution function of a random variable of type

Zn(X) − Zn(Y ).

See for example one of the references [2], [4], [7], [14] for the underlying theory in this.
Both the Zn(X) and the Zn(Y ) converge in distribution to a standard Gaußian distribution.
The sequences being independent, it follows that the sequence Zn(X) − Zn(Y ) converges
to a Gaußian distribution with mean 0 and variance 2. Now, when taking the limit in (4)
and replacing x by x/

√
2, one arrives at the conclusion that

lim
n→∞ Fn

n

(
1 + x√

n

)
= �

(x

2

)
.

The limit function being continuous, the convergence above is uniform in x . □

The combination of the previous theorem with the theorem below will make the derivations
in the next two sections straightforward. The theorem below describes the asymptotic be-
haviour of the quantile functions qn , belonging to the family of χ2-distributions, in terms
of the quantile function q of the standard Gaußian distribution.

Theorem 3. There exists a sequence of functions εn : (0, 1) → ℝ, converging pointwise
to 0, such that

qn(η)

n
= 1 +

√
2
n

[
q(η) + εn(η)

]
for all n = 1, 2, 3 . . . and for all 0 < η < 1. Similarly there exists a sequence of functions
δn : (0, 1) → ℝ, converging pointwise to 0, such that

n

qn(η)
= 1 −

√
2
n

[
q(η) + δn(η)

]
for all n = 1, 2, 3 . . . and for all 0 < η < 1.

Proof. Let
X1, X2, X3, . . .

be an infinite sample from a standard Gaußian distribution and let the associated Zn and
q̄n be as defined before. Define the functions εn as

εn(η) = q̄n(η) − q(η).

Then, by Lemma 1, the εn will converge pointwise to 0. Expressing the q̄n in terms of the
qn , the εn(η) may be written as:

εn(η) = qn(η) − n√
2n

− q(η).
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This may be rewritten as

qn(η)

n
= 1 +

√
2
n q(η) +

√
2
n εn(η)

from which the first statement in the theorem follows.
The second statement can be derived from the first by defining the functions δn by

n

qn(η)
= 1 −

√
2
n

[
q(η) + δn(η)

]
.

Then the δn are algebraically related to the εn as

δn(η) =
εn(η) −

√
2
n q(η)

[
q(η) + εn(η)

]
1 +

√
2
n

[
q(η) + εn(η)

] .

For fixed η the right side converges to 0 if n → ∞, thus completing the proof of the
theorem. □

6 The asymptotic behaviour of the probabilities Pn
n

Exploiting the asymptotics in the previous section it is easy to describe the asymptotic
behaviour of the probabilities Pn

n .

Theorem 4. For all 0 < γ < 1 one has

lim
n→∞ Pn

n (γ ) = 1 − 2 �

(
q
[1

2 (1 − γ )
]

√
2

)
.

Proof. By (2) in §3 the probability Pn+1
n+1 (γ ) may be expressed as

Pn+1
n+1 (γ ) = Fn

n

(
n

qn
(
η1
)
)

− Fn
n

(
n

qn
(
η2
)
)

(5)

where

η1 = 1 − γ

2
and η2 = 1 + γ

2
.

By Theorem 3 there exists a sequence of functions δn : (0, 1) → ℝ, converging pointwise
to 0, such that

n

qn(η)
= 1 −

√
2
n

[
q(η) + δn(η)

]
.

Using this, one derives through Theorem 2 that

lim
n→∞ Pn+1

n+1 (γ ) = �

(
−q(η1)√

2

)
− �

(
−q(η2)√

2

)

= �

(
q(η2)√

2

)
− �

(
q(η1)√

2

)
.
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Observing that

�

(
q(η2)√

2

)
= 1 − �

(
q(η1)√

2

)
the theorem follows. □
So, as was already announced at the end of §3, the Pn

n (γ ) are asymptotically the same as
their counterparts Pn in [9], where similar coverage problems were studied in the process
of estimating the mean of a population.

7 The asymptotic behaviour of the probabilities Qn
n

The asymptotics in §5 can also be used to derive in a straightforward way the asymptotic
behaviour of the probabilities Qn

n(γ ), where Qn
n(γ ) stands for Qn

n(γ, 1).

Theorem 5. For all 0 < γ < 1 one has

lim
n→∞ Qn

n(γ ) = 2 �
(√

2 q
[1

2 (1 − γ )
])

.

Proof. By (3) in §4 the probability Qn+1
n+1(γ ) may be expressed as

Qn+1
n+1(γ ) = 2 Fn

n

(
qn
(
η1
)

qn
(
η2
)
)

(6)

where

η1 = 1 − γ

2
and η2 = 1 + γ

2
.

From Theorem 3 it can be derived that there exists a sequence of functions θn : (0, 1) → ℝ,
converging pointwise to 0, such that

qn(η1)

qn(η2)
= 1 +

√
2
n

[
q(η1) − q(η2) + θn(γ )

]
.

By symmetry in the standard Gaußian distribution one has

q(η1) = −q(η2).

Hence one may write

qn(η1)

qn(η2)
= 1 +

√
2
n

[
2 q(η1) + θn(γ )

]
.

Using this and Theorem 2 one derives that

lim
n→∞ Fn

n

(
qn
(
η1
)

qn
(
η2
)
)

= �
(√

2 q(η1)
)

.

In virtue of (6) this proves the statement in theorem. □

Similar to the situation in the previous section, the Qn
n(γ ) are asymptotically the same as

their counterparts Qn in [9] where the corresponding coverage problem was studied in the
estimation of the mean of a population.
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8 Using interval overlap as a decision criterion

Given an N(μX , σ 2
X )-distributed and an N(μY , σ 2

Y )-distributed population, the hypothesis

H0 : σX = σY

is sometimes tested in the following way: Two samples X1, X2, . . . , Xm and Y1, Y2, . . . ,
Yn are drawn from both populations and their corresponding 95 % confidence intervals
for the variance are computed. Conclusive in the decision procedure is then whether the
intervals intersect or not. If they intersect, then the hypothesis H0 is maintained and if they
are disjoint, then H0 is rejected. When computing the confidence intervals at a coverage
equal to γ , then, by Theorem 5, one arrives in this hypothesis test (for equal sample sizes)
at an asymptotic significance level of

2 �
(√

2 q
[1

2 (1 − γ )
])

where, as before, q stands for the quantile function of a standard Gaußian distribution.
For γ = 0.95 this leads to an asymptotic significance level of 0.5574597 % (compare
this to the results in [3], [6], [9], [13]). In order to arrive in this decision procedure at an
asymptotic significance level of α, the coverage γ of the two interval estimates must be
adapted such as to have

2 �
(√

2 q
[1

2 (1 − γ )
]) = α.

Solving this equation towards γ leads to

γ = 1 − 2 �

(
q [ α/2 ]√

2

)
.

If the coverage γ is set in this particular way then the asymptotic significance level of the
decision procedure is equal to α. If the sample sizes are finite or unequal, however, then the
significance levels will deviate from α. For arbitrary sample sizes m and n the significance
level can be computed through (3), thereby taking ρ = 1. From now on, just to illustrate
one thing and another, the asymptotic significance level α will be pinned down to 0.05.
The two interval estimates must have a coverage of 0.8342315 to bring this about. Table 3,
on the next page, shows the significance levels for a few (finite) values for m and n for this
specific value of γ .

How does the decision procedure sketched above perform relative to Fisher’s 2-sample
variance test, when testing at the sample sizes and significance levels listed in the field of
the table above? It seems natural to compare the two decision procedures then as to their
power. As to this, denote, as before, the quotient σY /σX by ρ. The hypothesis that is to be
tested can then be formulated as

H0 : ρ = 1.

The power of the method of disjoint intervals is presented by the probability Qm
n (γ, ρ).

For equal sample sizes, that is for m = n, computations suggest that the difference in
power, relative to Fisher’s test, is in all cases less than 0.0001. For m 	= n, however, the
difference in power can be considerable. For example, when taking the sample sizes m = 5
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m → 3 5 10 20 50 100 500 ∞
n = 3 6.716 6.639 7.418 8.711 10.65 12.00 14.28 16.58

n = 5 6.639 5.972 6.151 7.115 8.989 10.50 13.37 16.58

n = 10 7.418 6.151 5.457 5.724 7.104 8.580 12.00 16.58

n = 20 8.711 7.115 5.724 5.221 5.773 6.903 10.46 16.58

n = 50 10.65 8.989 7.104 5.773 5.086 5.413 8.273 16.58

n = 100 12.00 10.50 8.580 6.903 5.413 5.043 6.749 16.58

n = 500 14.28 13.37 12.00 10.46 8.273 6.749 5.001 16.58

n = ∞ 16.58 16.58 16.58 16.58 16.58 16.58 16.58 ∗
Table 3

and n = 10, the power of the method of disjoint intervals in ρ = 3 exceeds the power in
Fisher’s test by more than 0.04. This particular evaluation shows that, when fixing some
significance level, Fisher’s 2-sample variance test does not automatically realize maximum
power. Fisher’s test is in some cases outperformed by the method of disjoint intervals. In
other cases, however, it is the other way round. Fisher’s test is an example of a maximum
likelihood test. It is known that such tests do not automatically maximize power at fixed
significance levels. See for example [7] for more details in this. As a closing remark, in the
above Fisher’s test was carried out in the way it is carried out in the powerful open-source
statistical package R (see [10]). That is to say, the left and right critical regions in the test
are taken to be of equal probabilistic size. Otherwise formulated, in Fisher’s variance test
the two-sided p-values are chosen to be twice the right-sided p-values.
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