
Elem. Math. 69 (2014) 23 – 29
0013-6018/14/010023-7
DOI 10.4171/EM/241

c© Swiss Mathematical Society, 2014

Elemente der Mathematik

Contractible Hamiltonian cycles in triangulated surfaces

Ashish Kumar Upadhyay

Ashish Kumar Upadhyay obtained his Ph.D. from the Indian Institute of Science Ban-
galore in 2005. He is now assistant professor and coordinator at the Department of
Mathematics, Indian Institute of Technology Patna, India. His interests are in areas
of topology and graph theory such as combinatorial and computational topology, and
graphs on surfaces.

1 Introduction

By a graph G := (V , E), we mean a simple graph with a vertex set V and an edge set E .
Thus, G does not have any loops or double edges. A surface will always mean a compact,
connected two-dimensional orientable manifold without a boundary. A map on a surface
S is an embedding of a graph G with a finite number of vertices such that the components,
which are called faces of S \G, are topological 2-cells. Hence, the closure of a component
in S \ G is a p−gonal disk, i.e., a 2-disk whose boundary is a p−gon for some integer
p ≥ 3. We call G the edge graph of the map and the vertices and edges of G are called the
vertices and edges of the map.

A map is called {p, q}-equivelar, p, q ≥ 3, if each face of the map is a p-gonal 2-disk
and each vertex is incident with exactly q faces. If p = 3, the map is called a q-equivelar

.

Triangulationen von geschlossenen Flächen sind nicht nur aus der Sicht der Numerik
interessant. Indem man solche Triangulationen in geeigneter Weise als Graphen be-
trachtet, spiegeln sie topologische, analytische und kombinatorische Eigenschaften der
Fäche wieder. 1972 zeigte Altshuler, dass in gewissen Triangulationen eines Torus stets
ein Hamilton-Kreis zu finden ist. Diese Beobachtung zum Ausgangspunkt nehmend,
werden in der vorliegenden Arbeit reguläre Graphen untersucht, die als Triangulatio-
nen von allgemeinen geschlossenen Flächen auftreten. Ein Hamilton-Kreis einer sol-
chen Triangulierung, der eine topologische Kreisscheibe berandet, heisst kontrahierbar.
Es gelingt dem Autor eine notwendige und hinreichende Bedingung für die Existenz
eines kontrahierbaren Hamilton-Kreises anzugeben. Dabei spielt ein Baumgraph in der
dualen Triangulierung eine entscheidende Rolle.
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triangulation or a degree-regular triangulation of type q . Please see [14] for details about
graphs on surfaces and [5] for related terminology in graph theory.

In this article, we are interested in studying cycles, especially Hamiltonian cycles, which
are in the edge graphs of equivelar triangulations of surfaces. Such cycles have been exten-
sively studied in the plane. For example, in [20], Tutte showed that every 4-connected pla-
nar graph has a Hamiltonian cycle. In 1970, Grünbaum conjectured that every 4-connected
graph that admits an embedding in the torus has a Hamiltonian cycle, (see [9] and [10]).
In particular, this conjecture includes the 4-connected graphs whose embedding gives rise
to equivelar maps on the torus. It is well known that there are exactly three distinct types
of equivelar maps on the torus, namely, {3, 6}, {4, 4} and {6, 3}, where the last one is the
dual of the {3, 6} map, (see [7] and [8]).

A. Altshuler studied Hamiltonian cycles and paths in the edge graphs of equivelar maps
on the torus, that is, in the maps that are equivelar and of types {3, 6} or {4, 4} (see [1],
[2]). He showed that, in the graph consisting of vertices and edges of equivelar maps of
the above types there exists a Hamiltonian cycle. He also showed that a Hamiltonian cycle
exists in every 6-connected graph on the torus.

By definition the faces in a triangulated surface are contractible in the topological sense.
A collection H of these faces is called a contractible sub-complex of the triangulation if
the union of the elements of H is contractible. A cycle in the edge graph of a triangulation
will be called contractible if the union of triangles that is bounded by it on one side is
a contractible sub-complex, (see [19]). There are other definitions of contractible sub-
complexes, see, e.g., [18], p. 744. Nevertheless, we will follow the above definition in this
paper.

In [4], Barnette showed that any 3-connected graph other than K4 or K5 contains either a
contractible cycle or a simple configuration as a subgraph. The definition of contractibil-
ity in article [4] asserts that, after contraction, the connectivity of the graph remains un-
changed (please see [6], p. 111 for the definition of edge-contraction).

It is also well known that triangulations of surfaces are 3-connected. Because we are
motivated by works of Grünbaum, Altshuler and Barnette, we combine these two concepts:
Hamiltonicity and the contractibility of a cycle. Furthermore we ask ourselves whether we
can always find a contractible Hamiltonian cycle in a given equivelar triangulation of a
surface.

In this article, we present a necessary and sufficient condition for the existence of such a
cycle in the edge graph of a given equivelar triangulation of surfaces (Theorem1). We have
strong reasons [12] to believe that the result given in this article will lead to an algorithm
that can be used to find contractible Hamiltonian cycles in general triangulations and maps
of surfaces. In addition, the existence of Hamiltonian cycles and, in particular, contractible
Hamiltonian cycles assumes significance in light of the following two examples.

In a triangulation, two triangles with a common edge form a quadrilateral with one diag-
onal. By replacing the existing diagonal with the other one, one obtains a different trian-
gulation on the same surface. This process is called a diagonal flip. In [16] it is shown
that, if n ≥ 5, then any two n vertex triangulations on the sphere that has a Hamiltonian
cycle can be transformed into each other by at most 4n − 20 diagonal flips. In addition
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it is shown that these flips preserve the existence of Hamilton cycles. Moreover, in [15]
the authors used contractible Hamiltonian cycles in triangulations of a projective plane to
prove that any two triangulations on a projective plane with n vertices can be transformed
into each other by at most 8n − 26 diagonal flips. The techniques can be further explored
to obtain or improve a bound on the number of diagonal flips required to transform an
n-vertex triangulation of a fixed surface S into another n-vertex triangulation of S.

Given an equivelar triangulation of a surface S that contains a contractible Hamiltonian
cycle, we show that there exists a certain type of tree in the edge graph of the dual map of
the given triangulation. Conversely if such a tree exists in the dual map of a triangulation,
we show that the given triangulation has a Hamiltonian cycle which bounds a triangulated
2-disk. If the equivelar triangulation of a surface has n vertices, then this disk has exactly
n − 2 triangles and all of its n vertices lie on the boundary cycle. We begin with some
definitions.

2 Definitions and Preliminaries

In this section we present some definitions that will be needed in the course of the proof
of Theorem 1. For more details on these definitions, please refer to [13] and [17]. A
map is called a Simplicial Complex if each of its faces is a simplex. Thus a triangulation
is a Simplicial Complex. For a simplicial complex K , the graph consisting of its edges
and vertices is called the edge-graph of K and is denoted by EG(K ). If v is a vertex
of K , then the number of edges that are incident with v is called the degree of v and is
denoted by deg(v). If every vertex of K has same degree q then we define degree of K
as degree of v and we denote it by deg(K ) = q . In the literature, vertices, edges and
faces of K are frequently termed as 0, 1 and 2 faces (or simplices) respectively. If the
number of i -simplices of a simplicial complex K is fi (K ) where 0 ≤ i ≤ 2, then the
number χ(K ) = f0(K ) − f1(K ) + f2(K ) is called the Euler characteristic of K. The
Euler characteristic of a map is defined similarly.

Let K be a simplicial complex. An edge τ of a 2-face σ in K is said to be a free 1-face
of σ if τ is not contained in any other 2-face in K . The process of removing a 2-face with
a free 1-face in a simplicial complex K is called an elementary collapse on K . Applying
a sequence of elementary collapses to K results in another simplicial complex K ′, and K
is said to collapse to K ′. If K collapses to a point, then we say that K is a collapsible
simplicial complex. It is a fact that topologically collapsible simplicial complexes are
contractible: see, e.g., [11], p. 32.

If K denotes a map on a surface S, then the dual map M , of K is defined to be the map on
S that has for its vertices the set of faces of K such that two vertices u1 and u2 of M are
joined by an edge in M if the corresponding faces in K are adjacent. The well-known maps
of type {3, 6} and {6, 3} on the surface of a torus are mutually dual maps: see Example 1
below.

Example 1. {3, 5}- and {3, 6}-equivelar maps are respectively shown on the Icosahedron
(Fig. 1) and the flat torus (Fig. 2). The dual map of the {3, 6} map on the flat torus is also
shown. The dashed lines show a proper tree and the darkened lines constitute a contractible
Hamiltonian cycle on these two surfaces.
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A path P in a graph G is a subgraph P : [v1v2 . . . vn] of G, such that the vertex set of P
is V (P) = {v1, v2, . . . , vn} ⊆ V (G) and vivi+1 are edges in P for 1 ≤ i ≤ n − 1. A path
P : [v1, v2, . . . , vn ] in G is said to be a cycle if vnv1 is also an edge in P . A graph without
any cycles or loops is called a tree. The main object of study of this paper is a tree that is
defined as follows:

Definition 1. Let M denote a map on a surface S such that M is the dual map of an n-
vertex equivelar triangulation K of the surface. Then M is a {q, 3}-equivelar map for some
q = deg(K ). Let T denote a tree on n − 2 vertices of M (i.e., in the edge graph of M).
We say that T is a proper tree if the following two conditions hold:

1. whenever two vertices u1 and u2 of T belong to a face F in M , a path P[u1u2]
joining u1 and u2 in the boundary of F belongs to T ;

2. if there exists a path P in T that also lies in a face F of M , then the length of P is at
most q − 2, where q = deg(K ).

In the following section, we present some facts and properties of a proper tree and prove
the main result of this article.
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3 Results

Let S be a surface with triangulation K and let the corresponding dual map be M . Let
v ∈ V (T ) be a vertex in a proper tree T in M . Then, deg(v) ≤ 3.

Lemma 3.1. Let T be a proper tree and let m be the number of vertices of degree three in
T . Then, the number of vertices of degree one in T is m + 2.

Proof. We prove this lemma by induction on the number e of edges of T . If e = 1, then
clearly, the number of vertices of degree one is 2 and there is no vertex of degree 3. Thus,
the result is true for e = 1. Assume the result to be true for a positive integer k > 1.
Let T be a proper tree with e = k + 1 edges, which are denoted by e1, e2, . . ., ek , ek+1.
Let T ′ be a subtree of T with k edges. Without loss of generality, we may assume that
T ′ consists of the edges e1, e2, . . ., ek and their vertices. Therefore, the subtree satisfies
the induction hypothesis. Because the degree of each vertex in T cannot be greater than
3, the addition of ek+1 to T ′ either results in a new vertex of degree three or a new vertex
of degree two. In both of these cases, the statement of the lemma holds. Thus, the proof
follows by induction.

Lemma 3.2. Let T be an (n − 2)-vertex proper tree in a polyhedral map M of type {q, 3}
on a surface S. Then, T intersects every face of M.

Proof. Let e denote the number of vertices of degree one in T . By the definition of a
proper tree, it is clear that M is the dual map of an n-vertex q-equivelar triangulation of
S. Hence, T has n − 2 vertices and n − 3 edges. We claim that the n − 3 edges of T lie
within exactly n − e faces of M .

To prove this claim, we enumerate the number of faces of M with which the edges of T
are incident. We construct sets E and F̃ as follows: let E be a singleton set that contains
an edge e1 of T and let F1 and F2 be the adjacent faces of e1. Let F̃ := {F1, F2}. Add an
adjacent edge e2 of e1 to E . Then, there is exactly one face F3 that is distinct from F1 and
F2 such that e2 lies in F3. Add this face to the set F̃ to obtain F̃ := {F1, F2, F3}. In this
way, we successively add edges to the set E that are adjacent to edges in E till we exhaust
all of the edges of T . Each additional edge that is added to E contributes exactly one face
to the set F̃ unless it is adjacent to two edges in the set E . Thus, the number of faces in F̃
is the number of edges of T minus the number of vertices of degree three +1. In a 3-tree,
the number of vertices of degree 3 is two less than the number of end points. Therefore,
the number of elements in F̃ is n − 3 − (e − 2) + 1. That is, F̃ has n − e elements.

Let F(M) denote the set of all faces of M and let G = F(M)\ F̃ . Then, G has e elements.
We claim that an end vertex of T lies on exactly one face F that is contained in G. Observe
that each vertex u of T is incident with exactly three distinct faces F1, F2 and F3 of M .
The edge of T that is incident with u lies within two of these faces, say, F1 and F2: i.e., F1
and F2 are in F̃ . Because, u is an end vertex, there is no edge of T that is incident with F3,
for otherwise the definition of T would be violated. Thus, u is incident with exactly one
face F3 of M such that F3 is contained in G. As u is an arbitrary end point, this hypothesis
holds for all of the end vertices. If it so happens that, for some end vertices u1 and u2 of
T , the corresponding equal faces W1 and W2 lie in G, then we would have u1 and u2 lying
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on the same face of M , but no path on W1 that joins u1 and u2 lies in T . This occurrence
would contradict the definition of T . As a result G has exactly e distinct elements, which
proves the lemma.

Lemma 3.3. Let K be an n-vertex equivelar triangulation of a surface S. Let M denote
the dual map corresponding to K and let T be an (n − 2)-vertex proper tree in M. Let D
denote the sub-complex of K which is dual to T . Then, D is a triangulated 2-disk and the
boundary of D, bd(D), is a Hamiltonian cycle in K .

Proof. By the definition of a dual, D consists of n−2 triangles that correspond to the n−2
vertices of T . Two triangles in D have an edge in common if the corresponding vertices
are adjacent in T . It is easy to see that D is a collapsible simplicial complex, and hence, it
is a triangulated 2-disk.

Moreover, as T has vertices of degree one, bd(D) is non-empty. As bd(D) is boundary
complex of a 2-disk it is a connected cycle. Observe that the number of edges in n − 2
triangles is 3(n − 2) and that for each edge of T , exactly 2 edges are identified. Hence,
the number of edges that remain unidentified (i.e., the number of free edges) in D is
3(n − 2) − 2(n − 3) = n. These edges are precisely those that belong to bd(D). A
similar argument shows that the number of vertices in bd(D) is also n. Now, we want to
show that all of the n vertices are distinct. For this purpose, assume that there are vertices
v1 and v2 in bd(D) such that v1 = v2 and v1 and v2 lie on a path of positive length < n
in bd(D). This assumption would imply that there are faces F1 and F2 in D such that v1
is in F1, v2 is in F2, F1 is distinct from F2 and F1 is not adjacent to F2. Thus, there exists
a face F ′ in D such that the vertex uF ′ in T that corresponds to F ′ does not belong to
the face F(v1) that corresponds to vertex v1. However, this conclusion contradicts the fact
that T is a proper tree. Therefore, the cycle bd(D) contains exactly n distinct vertices. As
the number of vertices V (K ) in K is n, bd(D) is a Hamiltonian cycle in K .

Theorem 3.4. Let S denote a surface that has an equivelar triangulation K . The edge
graph EG(K ) of K has a contractible Hamiltonian cycle if and only if the edge graph of
the corresponding dual map M of K has a proper tree.

Proof. The above lemma, Lemma 3.3 proves one half of this theorem. To prove the other
half, let K denote an equivelar triangulation and let H := (v1, v2, v3, . . ., vn) denote a
contractible Hamiltonian cycle in EG(K ). Let τ1, τ2, . . ., τm denote the faces of a trian-
gulated disk D whose boundary is H . We claim that all of the triangles that triangulate the
disc have their vertices on the boundary of the disk, i.e., on H . To prove the claim assume
otherwise. Then, there will be identifications on the surface, as all of the vertices of K will
also be on H . Now, if x denotes the number of triangles in this disk, then the Euler charac-
teristic relation gives us 1 = n−[ (3×x)−n

2 +n]+x . Thus, x = n−2. As a result the number
of triangles that triangulate the disc m = n −2. Now, in the edge graph of the dual map M
of K , consider the graph corresponding to this disk whose vertices correspond to the faces
τ1, τ2, . . ., τm . It is easy to check that this graph is a tree that is also a proper tree.

Remark. Because we started with the results of Altshuler, in the present article, we have
confined ourselves to degree-regular triangulations. In [12], we have been able to show
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that the result also holds for triangulations of surfaces where the degree of each vertex is
at least 4. Moreover, for some class of maps on surfaces, we have been able to show a
similar result with a slight modification in the definition of a proper tree.
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[19] T. Pisanski and P. Potočnik, Graphs on surfaces, in Handbook of Graph Theory, J. L. Gross and J. Yellen

(eds.), CRC Press, (2004), 611–624.
[20] W.T. Tutte, A theorem on planar graphs, Trans. Amer. Math. Soc., 82, (1956), 99–116.

Ashish Kumar Upadhyay
Department of Mathematics
Indian Institute of Technology Patna
Patliputra Colony
Patna 800 013, India
e-mail: upadhyay@iitp.ac.in


