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With two polynomials f and g and n = max{deg f, deg g} we associate an n×n matrix B ,
called the Bezoutian, and a 2n ×2n matrix R, called the resultant. Their defining relations
are given by (6) and (5) below, respectively. In terms of the coefficients of f and g they
are given by (8) and (4). In this note we give a simple and self-contained proof of the
equalities

dim ker B = dimker R = deg gcd( f, g), (1)

where gcd stands for greatest common divisor. H.K. Wimmer in [8] attributes this re-
sult to Jacobi who in 1836 showed that the singularity of what we call the Bezoutian
implies the existence of a common factor of f and g. More contemporary proofs of (1)
can be found in the recent books [3, Theorems 21.10 and 21.11] by H. Dym and [5, The-
orem 8.30] by P.A. Fuhrmann. In the Introduction to [3, Chapter 21] it is shown that

.

The Frenchman Étienne Bézout (1730–1783) taught mathematics at the Garde du
Pavillon, the Garde de la Marine and the Corps d’Artillerie and wrote several text-
books used widely in Europe and the USA. The little time left for research he devoted
mainly to solving systems of equations in several variables. He developed the “method
of simplifying assumptions”: when the general problem appears unsoluble consider
first special problems by making assumptions. He was successful: a theorem in al-
gebraic geometry, an identity in elementary number theory, an integral domain and a
matrix now carry his name. Our note concerns the Bézoutian matrix so termed by the
Copley medalists James Joseph Sylvester (in 1853) and Arthur Cayley (in 1857). The
Bézoutian matrix is a square matrix associated with two polynomials whose nullity
equals the number of their common zeros counting multiplicities. We give a self-
contained new proof of this fact. In the English literature the accent aigu on the e is
often omitted.
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dim ker B ≥ deg gcd( f, g) by using the defining formula for B , differentiation and chains
of vectors. That equality prevails is then proved by using these chains and the so-called
Barnett identity: B = H f g(C f ), where H f is the Hankel matrix for f defined below and
C f is the companion matrix of f . In [5] the matrix B is expressed in terms of a matrix
representation of g(S f ), where S f is the shift operator in the space X f of polynomials
modulo f , relative to two suitably chosen bases in X f . In view of [5, Corollary 8.29]
this formula is closely related to the Barnett identity. In this note we do not resort to this
identity. Our approach, we think, is more direct. Of course some of the formulas derived
below also appear in [3, Chapter 21] and [5, Chapter 8]. Our proofs of these formulas are
different. For a survey of results related to Bezoutians, see [1, Fact 4.8.6] in the encyclope-
dic book by D.S. Bernstein, and for applications of Bezoutians in numerical linear algebra
and system theory, see for example [4] and [6], respectively.

1 Notation and basic notions
The vector space of all polynomials with coefficients in C and in the variable z is denoted
by C[z]. Its Cartesian square is denoted byC2[z]. For n ∈ N, C[z]<n denotes the subspace
of C[z] of all polynomials of degree strictly less than n. This space has dimension n.
Similarly, C2[z]<n denotes the Cartesian square of C[z]<n.

We use I to denote the identity matrix, Z the reverse identity and N the nilpotent Jordan
block:

Z :=
⎡
⎢⎣

0 · · · 1
... . .

. ...
1 · · · 0

⎤
⎥⎦ , N :=

⎡
⎢⎢⎣

0 1 · · · 0
...
. . .

. . .
...

0
. . . 1

0 0 · · · 0

⎤
⎥⎥⎦ .

For a polynomial
f (z) = f0 + f1z + · · · + fnzn

in C[z] we define two n × n matrices, one Hankel and one Toeplitz, associated with f as
follows:

H f :=
⎡
⎢⎣

f1 · · · fn
... . .

. ...
fn · · · 0

⎤
⎥⎦ , T f :=

⎡
⎢⎣

f0 · · · fn−1
...

. . .
...

0 · · · f0

⎤
⎥⎦ .

Since the left-multiplication by Z reverses the rows, it turns a Hankel matrix into a Toeplitz
and vice versa:

Z H f :=
⎡
⎢⎣

fn · · · 0
...

. . .
...

f1 · · · fn

⎤
⎥⎦ , ZT f :=

⎡
⎢⎣

0 · · · f0
... . .

. ...
f0 · · · fn−1

⎤
⎥⎦ .

As each Hankel matrix is symmetric, we have ZT f = (
ZT f

)� = T �
f Z , where the super-

script � is used to denote a matrix transpose. Consequently,

T�
f = ZT f Z . (2)
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The vector space of upper (lower) triangular Toeplitz matrices is spanned by the identity I
and the powers of N (N�, respectively). Therefore, the upper (lower) triangular Toeplitz
matrices form a commutative algebra. In particular for polynomials f as above and g(z) =
g0 + g1z + · · · + gnzn we have

T f Tg = TgT f , H f Z Hg = HgZ H f , (3)

where the last equality follows from (Z H f )(Z Hg) = (Z Hg)(Z H f ).

For n ∈ N and z ∈ C we denote by Vn(z) the n × 1 column vector

Vn(z) = [
1 z · · · zn−1

]�
.

This notation is convenient as it provides a compact way of writing polynomials. For
example, a polynomial a(z, w) in two variables z and w can be written as:

a(z, w) =
n−1∑
j,k=0

a jkz
jwk = Vn(z)

�AVn(w),

where A is the n × n coefficient matrix
[
a jk

]n−1
j,k=0 of a(z, w).

The resultant R of the polynomials f and g is the 2n × 2n matrix given as a 2 × 2 block
matrix:

R =
[
T f Z H f

Tg Z Hg

]
. (4)

Notice that the action of R on V2n(z) is particularly simple:

RV2n(z) = [
f (z)Vn(z) g(z)Vn(z)

]�
. (5)

Next we define the Bezoutian B of f and g. First consider the polynomial f (z)g(w) −
f (w)g(z) in two variables. Since this polynomial vanishes for all w = z ∈ C, there exists
a polynomial b(z, w) in two variables such that

f (z)g(w) − f (w)g(z) = (z − w)b(z, w) for all z, w ∈ C.

The Bezoutian B of f and g is the n × n coefficient matrix of b(z, w):

b(z, w) = Vn(z)
�BVn(w), z, w ∈ C. (6)

The null space or kernel of a matrix (or a linear transformation) A is denoted by ker A. Its
dimension is called the nullity of A.

2 A connection between R and B
To establish a connection between R and B we consider the polynomial (zn − wn)b(z, w)
and we find two ways of representing its coefficient matrix. To find the first representation
we use the standard identity

zn − wn = (z − w)

n−1∑
j=0

zn−1− jw j = (z − w)Vn(z)
�ZVn(w), z, w ∈ C,
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matrix algebra and (5):

(zn − wn)b(z, w) = (z − w)b(z, w)Vn(z)
�ZVn(w)

= (
f (z)g(w) − g(z) f (w)

)
Vn(z)

�ZVn(w)

=
[

f (z)Vn(z)

g(z)Vn(z)

]� [
g(w)ZVn(w)

− f (w)ZVn(w)

]

=
[

f (z)Vn(z)

g(z)Vn(z)

]� [
0 Z

−Z 0

] [
f (w)Vn(w)

g(w)Vn(w)

]

= V2n(z)
�R�

[
0 Z

−Z 0

]
R V2n(w).

The second representation involves the Bezoutian:

(zn − wn)b(z, w) = (zn − wn)Vn(z)
�B Vn(w)

= (
znVn(z)

)�
B Vn(w)−Vn(z)

�B
(
wnVn(w)

)
= V2n(z)

�
[

0 0

B 0

]
V2n(w) + V2n(z)

�
[
0 −B

0 0

]
V2n(w)

= V2n(z)
�

[
0 −B

B 0

]
V2n(w).

These two representations of the coefficient matrix of (zn − wn)b(z, w) provide a connec-
tion between R and B:

R�
[

0 Z

−Z 0

]
R =

[
0 −B

B 0

]
. (7)

On the other hand, using the definition of R, (2) and (3) we obtain

R�
[

0 Z

−Z 0

]
R =

[
ZT f Z ZTg Z

H f Z HgZ

] [
ZTg Hg

−ZT f −H f

]

=
[

ZT f Tg − ZTgT f ZT f Z Hg − ZTg Z H f

H f Tg − HgT f H f Z Hg − HgZ H f

]

=
[

0 −(
H f Tg − HgT f

)�

H f Tg − HgT f 0

]
.

Together with (7), the last equality yields[
0 −(

H f Tg − HgT f
)�

H f Tg − HgT f 0

]
=

[
0 −B

B 0

]
,

and thus
B = H f Tg − HgT f = B�. (8)
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3 R and B have the same nullity

Equation (7) indicates that there is a connection between ker R and ker B . An even more
direct connection between ker R and ker B is obtained from (4), (8) and (3) (listed in the
order in which they are used) as follows:[

I 0
T f Z H f

]
R =

[
T f Z H f

T 2
f + Z H f Tg T f Z H f + Z H f Z Hg

]

=
[

T f Z H f

Z B + (
T f + Z Hg

)
T f

(
T f + Z Hg

)
Z H f

]

=
[

0 I
Z B T f + Z Hg

] [
I 0

T f Z H f

]

=
[

0 I
Z T f + Z Hg

] [
B 0
0 I

] [
I 0

T f Z H f

]
.

(9)

If we assume that n = deg f , then H f is invertible, yielding that the first (as well as the
last) block matrix in (9) is invertible. Since the block matrix in (9) whose antidiagonal
entries are I and Z is also invertible, (9) implies that R and B have the same nullities:

dim ker R = dimker B. (10)

4 The nullity of B in terms of f and g

Consider the multiplication operator

M : C2[z]<n → C[z]<2n

defined by

M

[
u

v

]
= f u + gv, u, v ∈ C[z]<n.

For a characterization of the null space ker M of M in terms of f and g we need the
greatest common divisor h of f and g, its degree k = deg h and factorizations f = f̂ h,
g = ĝh. Then

ker M =
{[

u
v

]
∈ C

2[z] : u = −ĝq, v = f̂ q, q ∈ C[z]<k

}
. (11)

The inclusion ⊇ in (11) is clear. To prove ⊆, let u, v ∈ C[z]<n and
[
u v

]� ∈ ker M .

Then f u + gv = 0, implies f̂ u = −ĝv. Since f̂ and ĝ have no common zeros, the
last identity yields that there exist polynomials p and q such that u = ĝ p and v = f̂ q .
Substituting back to f̂ u = −ĝv, we get f̂ ĝ p = −ĝ f̂ q . Hence p = −q . Since deg v < n
and deg f̂ = n − k, v = f̂ q implies deg q < k. This proves (11).

The standard basis for C2[z]<n is[
1

0

]
, . . . ,

[
zn−1

0

]
,

[
0

1

]
, . . . ,

[
0

zn−1

]
,
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while the standard basis for C[z]<2n is

1, z, . . . , zn−1, zn, . . . , z2n−1.

The matrix representation for M with respect to these standard bases is R�, see (5). There-
fore the nullity of R� is dim ker M . Since (11) yields dim ker M = k and the nullity of
R� equals the nullity of R, we have proved that the nullity of R is k and, by (10),

dim ker B = dimker R = k = deg h.

5 Final remarks

It was remarked in [6, p. 318] that the Bezoutian of a pair of polynomials is defined when-
ever n ≥ max{deg f, deg g}. We add to this that the same is true for the resultant and that
if n ≥ m := max{deg f, deg g}, then formula (1) has to be replaced by the formula

dim ker Bn = dimker R2n = n − m + deg gcd( f, g), (12)

where, for example, the index n in Bn indicates that Bn has size n×n. Indeed, (12) follows
from (1) and from the equalities

dim ker Bn = n − m + dimker Bm and dimker R2n = n − m + dimker R2m .

The first of these two equalities holds because of (6), which implies Bn =
[
Bm 0
0 0

]
, and

the second follows from the reasoning in Section 4 with k in (11) replaced by n − m + k.

Finally we note that (12) can be expressed as

dim ker Bn = dimker Rn = deg gcd( f̄ , ḡ),

where

f̄ (y, z) = f0yn + f1yn−1z + · · · + fnzn and ḡ(y, z) = g0y
n + g1yn−1z + · · · + gnz

n

are homogenizations (in the sense of [7, pages 6–7]) of f and g, respectively. If n > m =
max{deg f, deg g}, then y = 0 is a common zero of f̄ and ḡ of multiplicity n − m. Since
the zero y = 0 of the homogenization is commonly viewed as a “zero at infinity” of the
original polynomial (see for example [2, 4.4.3]) we can now formulate the main theorem
on the “generalized” Bezoutian Bn: The nullity of the Bezoutian matrix Bn associated
with a pair of polynomials f and g equals the number of their common zeros including
the “zero at infinity” and counting multiplicities.
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