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1 Introduction

We use the terminology polyhedron for a polyhedral surface which is permitted to touch
itself but not self-intersect, and a polyhedron always can be folded by creases like a piece
of paper. A flat folding of a polyhedron is a folding by creases into a multilayered planar
shape without self-intersection. The results presented here are related to the following two
problems proposed by Erik Demaine et al. ([1], Open Problems 18.1 and 18.3 in [2]).

Problem 1. Can every flat folded state of a polyhedron be reached by a continuous folding
process?

Problem 2. Which polyhedra can be flattened according to the straight-skeleton gluing?

E. Demaine et al. (see [2], pp. 281–284) showed that every convex polyhedron possesses
a flat folded state obtained by the disk packing method. They also showed the existence
of flat folded states obtained by the straight-skeleton gluing for special pyramids and spe-
cial polyhedra, where they defined the straight skeleton in the three-dimensional space as
follows: offset all faces in parallel so that the perpendicular offset distance is equal among

.

Orangensaft wird häufig in quaderförmigen Kartonverpackungen verkauft. Hat man
den Saft ausgetrunken, möchte man den Karton platzsparend im Müll entsorgen, indem
man ihn flach in die Ebene faltet. Dies gelingt, ohne den Karton zu bschädigen und
sogar ohne die manchmal vorhandenen Leimlaschen zu lösen. In ähnlicher Weise sind
auch manche Einkaufstüten aus Papier gefaltet. Es stellt sich sofort die Frage, ob jedes
Polyeder in die Ebene gefaltet werden kann, und ob dabei die Ausgangsposition stetig
und überschneidungsfrei in die Endposition deformiert werden kann. Die vorliegende
Arbeit geht, startend bei dreiseitigen Pyramiden, just dieser Frage nach.
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all inset faces and trace the trajectories of the edges of the polyhedron, forming faces of
the straight skeleton which bisect pairs of polyhedron faces.
In this paper, we give a precise definition of the straight-skeleton subdivision and gluing
of a convex pyramid P with an n-gonal base for 3 ≤ n ≤ 5. Then, we prove that there is
a continuous flat folding processe for P according to the straight-skeleton gluing. Using
this result, we prove that every convex polyhedron is flattened continuously by using the
straight-skeleton gluing locally. Finally, we give a remark that each Archimedean polyhe-
dron is continuously flattened by pushing a face toward its opposite face orthogonally.

For each Platonic polyhedron, the existence of a continuous folding process was proved by
J. Itoh and the author in [3] by using the property of rhombi, and we refer this continuous
folding process as a rhombus method. For general convex polyhedra, J. Itoh, C. Vı̂lcu and
the author in [4] proved, by using the property of cut loci and Alexandrov’s gluing theorem,
that every convex polyhedron possesses infinitely many continuous flat folding processes
(which are referred as a cut locus method), and they also gave a sufficient condition under
which any flat folded state of a convex polyhedron can be reached by a continuous folding
process, which is a partial answer to Problem 1.

Note that any polyhedron does not change its volume under flexing if shapes of the faces
are fixed, which was proved by I. Sabitov [5, 6]. So we need infinite line segments for
moving creases to change shapes of some faces and to flatten a polyhedron. The cut
locus method requires a lot of portions for moving creases which cover almost the whole
surface of a polyhedron ([4]). On the other hand, the rhombus method requires very limited
portions of a polyhedron for moving creases. We extend the rhombus method to a method
which is applicable to more general situations, and it plays key roles for the proofs of our
theorems.
Section 2 is devoted to propose a key lemma (Lemma 1) and its application on kites (con-
vex quadrilaterals with two pairs of equal adjacent sides) (Lemma 2). In Section 3, we
define the straight skeleton subdivision and gluing for a pyramid with an n-gonal base for
3 ≤ n ≤ 5 (Definitions 3–6). We prove main theorems (Theorems 1–3) that every pyramid
P with an n-gonal base (3 ≤ n ≤ 5) is continuously flattened by the straight-skeleton glu-
ing so that the n-gonal base and one side face have no crease during the folding process.
In Section 4, by applying those main theorems to general convex polyhedra P , we prove
that P is continuously flattened by local use of the straight-skeleton gluing (Theorem 4).
In Section 5, we give a remark that there is another application of Lemma 2 so that each
Archimedean polyhedron is continuously flattened by pushing one face to the opposite
face orthogonally.

2 Folding kites
For two points x, y in the three-dimensional space R3, we denote by xy the line segment
joining those two points, and by dist(x, y) or |xy| the Euclidean distance between those
two points. Let F be a two-dimensional surface consisting of polygons in R

3 and let x, y
be two points of F . The intrinsic distance from x to y is defined as the length of shortest
paths in F joining x and y, and it induces an intrinsic metric on F . A mapping from F to
a surface G is called an intrinsic isometry if the mapping is isometric with respect to their
intrinsic metrics.
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Definition 1. Let P be a polyhedron in R
3. We say that a family of polyhedra {Pt : 0 ≤

t ≤ 1} is a continuous folding process from P = P0 to P1 if it satisfies the following
conditions:

(1) For each 0 ≤ t ≤ 1, there is an intrinsic isometry from Pt onto P .

(2) For each x ∈ P the mapping [0, 1] � τ �−→ Pτ (x) ∈ {Pt (x) : 0 ≤ t ≤ 1} is
continuous, where Pt (x) is the image of x in Pt .

Moreover, if P1 is a flat folded polyhedron, we say that P is flattened by a continuous
folding process and we call P1 a flat folded polyhedron (or state) of P .

For a two-dimensional surface Q in R
3 if a family of two-dimensional surfaces {Qt : 0 ≤

t ≤ 1} satisfies the corresponding conditions to (1) and (2), we call the family a continuous
folding process from Q = Q0 to Q1.

Definition 2. Let K = abcd be a kite with |ab| = |bc| and |ad| = |dc| (see Figure
1(1) for example). Choose any point h on bd . Fold K in half by a valley fold on bd
(the distance of corresponding points to a and c is zero), and then fold by mountain folds
on the line segments corresponding to ah (hc), to obtain a flat folding of K . We call the
resulting shape of K a flat folded kite for h and denoted by Kh (see Figure 1(2)). Denote by
a′, b′, c′, d ′ and h′ the images of a, b, c, d and h respectively by the intrinsic isometry
from K to Kh . Define

Lh = dist(b′, d ′).
In the above process, at first, the distance of corresponding points to a and c decreased to
zero, and then the one for b and d decreased to Lh . Now we show that there is a continuous
folding process from K to Kh such that those two distances decrease simultaneously. We
define a following shape of the kite K .

Let l be any given number with Lh ≤ l ≤ |bd|. Apply mountain folds to ah, hc and bh,
and a valley fold to hd so that dist(b′, d ′) = l where x ′ means the image of a point x ∈ K
by the intrinsic isometry from K to the resulting shape which is denoted by Sl . Then such
Sl is unique except congruence, because a′ and c′ are fixed by the three distances from
b′, h′, and d ′ (see Figures 1(3) and 1(4)). We call Sl a simple folded kite with distance l.
Define

Ml = dist(a′, c′).

Lemma 1. Let K = abcd be a kite in R
3 with |ab| = |bc| and |ad| = |dc|. Let h be any

point on bd. For any given numbers l (Lh ≤ l ≤ |bd|) and m (0 ≤ m ≤ Ml ), there is a
point q on hc such that

(1) by applying mountain folds to {qb, qc, qd, ah}, and valley folds to {hb, hq, hd} so
that the triangles 	hbq and 	hdq touch to the triangles 	abh and 	adh respec-
tively (see Figures 1(5)and 1(6)), and that

(2) the resulting figure K ′ satisfies

dist( f (b), f (d)) = l, dist( f (a), f (c)) = m

where f is the intrinsic isometry from K to K ′. We call such K ′ a folded kite with
distances (l,m).
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Fig. 1 How to fold a kite; (1) a kite; (2) a flat folded kite Kh ; (3) creases for mountain folds shown by dotted
line segments and a valley fold shown by a bold dotted line segment; (4) a simple folded kite Sh with distance
l; (5) the point q for a given l, m and creases for mountain or valley folds; (6) the shape of the folded kite with
distances (l, m); (7) a rotated image of the half of Sh with c′ ; (8) the intersection point r; (9) the folded kite with
distances (l, m).

Proof. Let Sl be a simple folded kite with the distance l as shown in Figure 1(4) and denote
by x ′ ∈ Sl the corresponding point to x ∈ K . Divide Sl into halves along b′h′ and h′d ′.
Those two parts are symmetric to each another about the plane including 	b′h′d ′.
Step 1. Rotate the half part including c′ about b′d ′ so that the distance between a′ (in
the other half part) and c′′ (the rotated point of c′), is the given number m (Figure 1(7)).
Denote by h′′ the rotated point of h′, and by r the intersection of a′h′ and c′′h′′ (Figure
1(8)). Since the rotated half part and the other half part including a′ are congruent and
symmetric to each other about the plane including 	b′rd ′, we have |a′r | = |c′′r |, and
hence 	b′rh′ ≡ 	b′rh′′ and 	d ′rh′ ≡ 	d ′rh′′, where X ≡ Y for subsets X,Y in R

3

means that X is congruent to Y .

Step 2. Let q be the point on hc in K corresponding to r (Figure 1(5)). Apply mountain
folds to {qb, qc, qd, ah}, and valley folds to {hb, hq, hd} so that the triangles 	hbq and
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	hdq touch to the triangles 	abh and 	adh respectively. Then we obtain a folded kite
with distances (l,m) (Figure 1(9)). �

Lemma 2. Let K = abcd be a kite in R
3 with |ab| = |bc| and |ad| = |dc|. Let h be any

point on bd, and let lt → Lh (Lh ≤ lt ≤ |bd|) and mt → 0 (0 ≤ mt ≤ Mlt ) as t → 1
(0 ≤ t ≤ 1). There is a continuous folding process {Kt : 0 ≤ t ≤ 1} of folded kites with
distances (lt , mt ) so that K0 = K , and that K1 is a flat folded kite for h.

Proof. For any fixed l (Lh ≤ l ≤ |bd|), the point q approaches the point c as m → 0
where 0 ≤ m ≤ Ml . So, if lt → Lh and mt → 0 (mt ≤ Mlt ) simultaneously as t → 1
(0 ≤ t ≤ 1), there is a continuous folding process of {Kt : 0 ≤ t ≤ 1} of folded kites with
(lt ,mt ) by Lemma 1. �

Remark. In the continuous process of folded kites with (lt ,mt ) for 0 ≤ t ≤ 1 shown in
the proof of Lemma 2, the point q approaches the point c as t → 1, and so the creases for
mountain folds on bq and dq move from bh and dh to bc and cd .

Lemma 1 is an extension of the property of rhombi, shown in [3] where h is fixed as the
midpoint of bd .

3 The straight-skeleton subdivision and gluing
We assume that pyramids are convex through this paper. We define a straight skeleton
subdivision of a pyramid P with an n-gonal base for 3 ≤ n ≤ 5 and show that the pyramid
P can be flattened by a continuous folding process according to such a subdivision.

Definition 3. Let 3 ≤ n ≤ 5 and let P be a pyramid which has an n-gonal base B =
b1b2 · · · bn , an apex a, and side faces Fi (1 ≤ i ≤ n), where Fi has the edge bibi+1 and
indices are considered modulo n (see Figures 2(1), 3(1), and 4(1)). Let T be its unfolding
along n edges adjacent to a, and let ai (1 ≤ i ≤ n) be corresponding points to a in T ,
where ai ∈ Fi (we use the same symbol for the corresponding point or face in T to an
original point or face in P , except a, if there is no fear of confusion) (see Figures 2(2),
3(2), and 4(2)). For each vertex bi (1 ≤ i ≤ n) there are three faces {B, Fi , Fi−1} which
are adjacent to bi , and whose angles at bi are denoted by θi , ξi , and ηi respectively. Define
for i (1 ≤ i ≤ n)

αi = (ξi + ηi − θi )/2, βi = ξi − αi , γi = ηi − αi .

Then for i (1 ≤ i ≤ n), αi + βi = ξi , αi + γi = ηi , βi + γi = θi and

2(αi + βi + γi ) = θi + ξi + ηi = ∠ai−1biai .

For each i (1 ≤ i ≤ n), draw a half-line li starting at bi toward the interior of B so that li
forms the angles βi and γi with the edges bibi+1 and bibi−1 respectively (Figure 2(2)).

Lemma 3. If P is a triangular pyramid, those three half-lines li (1 ≤ i ≤ 3) are concur-
rent.

Proof. Let p be the intersection of l1 and l2. Let pi (1 ≤ i ≤ 3) be the mirror image
of p about the edge bibi+1 in T (P). Since |a1b1| = |a3b1|, |b1 p1| = |b1 p| = |b1 p3|,
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Fig. 2 (1) A triangular pyramid P and its straight skeleton subdivision; (2) an unfolding of T and half-lines; (3)
the corresponding straight skeleton subdivision of its unfolding; (4) the subset Q of P with creases for valley
folds on b1 p1 and b2 p2; (5) the moving creases for the continuous flat folding process of P; (6) Pt for some
0 < t < 1 in the continuous flat folding process; (7) the flat folded state P1.
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and ∠a1b1 p1 = α1 = ∠a3b1 p3, we have 	a1 p1b1 ≡ 	a3 p3b1 and hence |a1 p1| =
|a3 p3|. Similarly, we have |a1 p1| = |a2 p2|. Therefore |a2 p2| = |a3 p3|, which leads
	a2 p2b3 ≡ 	a3 p3b3 by |b3a2| = |b3a3| and |b3 p2| = |b3 p3|. Since ∠p2b3 p3 = 2θ3,
we have ∠p2b3a2 + ∠p3b3a3 = θ3 + ξ3 + η3 − 2θ3 = ξ3 + η3 − θ3 = 2α3. Hence
∠a2b3 p2 = ∠a3b3 p3 = α3. Therefore, ∠b1b3 p = ∠b1b3 p3 = ξ3 − α3 = β3, and
∠b2b3 p = η3 − β3 = γ3, that is, the line l3 passes through the point p. �

Definition 4. Let P be the triangular pyramid discussed in the proof of Lemma 3. Since
each face of P includes p or pi , draw line segments from such points to the vertices of
the face (Figures 2(1) and 2(3)). Then each side edge abi (1 ≤ i ≤ 4) in P is a common
edge of two congruent triangles which comprise a kite. We call such a subdivision the
straight-skeleton subdivision of P .

Then all parts in such a subdivision are paired by congruence such that each side edge
of P is a diagonal of a kite. If by gluing two parts in each pair (i.e., putting one upon
another), we obtain a flat folded state of P , we call such state a flat folded state of P with
the straight-skeleton gluing.

Theorem 1. Each triangular pyramid P has a continuous folding process {Pt : 0≤ t ≤1}
from P to a flat folded state P1 with the straight-skeleton gluing so that the base and one
side face of P have no crease during the process.

Proof. Let Q be the subset of P obtained by removing one kite (say b2 p1ap2) from P
(see Figure 2(4)). Apply valley folds to line segments {b1 p1, b3 p2}, and rotate the apex
a about the edge b1b3 toward b2 continuously so that it touches the plane including the
base 	b1b2b3. Then p1 and p2 rotate simultaneously about the edges b1b2 and b2b3
respectively, and approach to p ∈ 	b1b2b3, and hence, Q is flattened continuously.

Let h be the intersection of the edge ab2 and the extension of the line segment b3 p2. Since
the quadrilateral ap1b2 p2 of P is a kite, by Lemma 2 it has a family of folded kites on
p2h which comprise a continuous folding process. Hence, P is flattened by a continuous
folding process with the straight-skeleton gluing, and B and F3 have no crease during the
process (see Figures 2(5)–(7)). �

Definition 5. Let P be the quadrilateral pyramid discussed in Definition 3. Let p be the
point closer to b1 in intersections l1 ∩ l2 and l1 ∩ l4 (either of them if they are equal), say
p = l1 ∩ l2. Let q = l3 ∩ l4 (possibly q = p). Divide the quadrilateral base B = b1b2b3b4
into four parts by {b1 p, b2 p, b3q, b4q, pq} (Figure 3(2)). Divide each side face Fi of
P by the mirror image of the part including bibi+1 about bibi+1, and by line segments
joining ai to the images of p or q (see Figure 4(1) and Figure 4(2)). Then each side edge
abi (1 ≤ i ≤ 4) in P is a common edge of two congruent triangles which comprise a kite.
We call such a subdivision the straight-skeleton subdivision of P .

Then all parts in such a subdivision are paired by congruence such that each side edge of
P is a diagonal of a kite. If by gluing two parts in each pair, we obtain a flat folded state
of P , we call such a state a flat folded state of P with the straight-skeleton gluing.

Theorem 2. Any quadrilateral pyramid P has a continuous folding process {Pt : 0≤ t ≤1}
from P to a flat folded state P1 with the straight-skeleton gluing so that the quadrilateral
base and one side face of P have no crease during the process.
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Fig. 3 (1) A quadrilateral pyramid P and its straight skeleton subdivision; (2) the corresponding straight skeleton
subdivision of its unfolding; (3) the subset Q of P with creases for valley folds; (4) the moving creases for the
continuous flat folding process of P; (5) Pt for some 0 < t < 1 in the continuous flat folding process; (6) the
flat folded state P1.

Proof. If p = q , the existence of a continuous folding process from P to a flat folded state
of P with the straight-skeleton gluing is obtained by a similar argument to the case n = 3,
where we apply Lemma 2 to two kites instead of one. So, we omit the details.

Now assume p �= q . Choose one side face of P which has a quadrilateral in its subdivision.
For example, choose F4 = 	b1b4a in P (	b1b4a4 in T ). Let Q be the part of P obtained
by removing two kites ap1b2 p2 and aq1b3q2 from P , where Q is connected at a (see
Figure 5(3)). Apply valley folds to {b1 p1, p2q1, q2b4, p2b3} in Q. Rotate the apex a
about the edge b1b4 toward the edge b2b3 continuously until it touches the plane including
the base B . Then, two pairs {p1, p2} and {q1, q2} approach p and q respectively and
simultaneously, and hence Q is flattened continuously.

By Lemma 2, each kite which was removed from P , is continuously flattened so that the
distance between p1 and p2 as well as the distance between q1 and q2 decrease to zero.
The process is similar to the one for n = 3, so we omit the details. Hence, P is flattened
by a continuous folding process according to the straight-skeleton gluing, and B and F4
have no crease during the process (see Figures 4(4)–(6)). �
Definition 6. Let P be the pentagonal pyramid discussed in Definition 3. Let p be the
closer point to b1 in intersections l1 ∩ l2 and l1 ∩ l5 (either of them if they are equal), say
p = l1 ∩ l2. Let q be the closer point to b4 in intersections l4 ∩ l5 and l4 ∩ l3 (either of
them if they are equal), say q = l4 ∩ l5.
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For a point r on the half-line l3 in the base B we denote by r1, r2, and r3 the mirror images
of r about b2b3, b3b4, and b1b5 respectively in P . Then we can choose r such that |r1a2| =
|r3a5|, whose existence is as follows. Let a′ be the mirror image of a5 about b1b5 in T .
Fold the face F2 with a valley fold along some line segment in F2 so that b2b3 are fixed
and that a2 goes to the position of a′. Then the position of r is obtained as the intersection
of l3 and the crease for the valley fold. (It may help to consider the quadrilateral pyramid
with the base b1b2b3b5 and the apex a and apply the continuous folding process to it by
Theorem 2, and then the flat folded state indicates the valley fold in F2.)

Then 	r1b3a2 ≡ 	r2b3a3 by |r1b3| = |r2b3|, |a2b3| = |b3a3|, and ∠r1b3a2 = ∠r2b3a3.
Hence |r1a2| = |r2a3| and so

|r1a| = |r2a| = |r3a|.
Divide B into five parts Bi (1 ≤ i ≤ 5) by {b1 p, b2 p, b3r, b4q, b5q, rp, qr} so that
Bi has bibi+1. Divide each side face Fi (1 ≤ i ≤ 5) by the mirror image (denoted by B ′

i )
of Bi about bibi+1, and line segments joining vertices of B ′

i to a (ai ∈ T ) (see Figures 6(1)
and 6(2)). Then each edge abi (1 ≤ i ≤ 5) is a common edge of two congruent triangles
which comprise a kite. We call such a subdivision the straight-skeleton subdivision of the
pentagonal pyramid P .

Then all parts in such a subdivision are paired by congruence such that each side edge of
P is a diagonal of a kite. If by gluing two parts in each pair we obtain a flat folded state of
P , we call such a state a flat folded state of P with the straight-skeleton gluing.

Theorem 3. Any pentagonal pyramid P has a continuous folding process {Pt : 0≤ t ≤1}
from P to a flat folded state P1 with the straight-skeleton gluing so that the pentagonal
base and one side face of P have no crease during the process.

Proof. If p = q , then p = q = r , which is similar to the case n = 3, P is flattened by a
continuous folding process according to the straight-skeleton gluing by applying Lemma 2
to three kites instead of one.

Suppose p �= q . If p = r or q = r , which is similar to the case n = 4, P is flattened by a
continuous folding process according to the straight-skeleton gluing by applying Lemma 2
to three kites instead of two.

Suppose p �= r and q �= r . Let e = b1b5 which is the common edge of two pentagonal
parts in the subdivision. Let Ki (1 ≤ i ≤ 3) be kites with the side edge abi+1 as its
diagonal, which are disjoint with e.

Let Q be the part of P obtained by removing those Ki (1 ≤ i ≤ 3), where P is connected
at a (Figure 6(3)). Apply valley folds to {b1 p1, p2r1, r2q1, q2b5, p2b3, q1b3} in Q. Ro-
tate the apex a about the edge b1b5 toward the vertex b3 continuously so that it touches the
plane including the base B . Then, three pairs {p1, p2}, {r1, r2}, and {q1, q2} approach p,
r , and q respectively and simultaneously, and hence Q is flattened continuously.

By Lemma 2, kites Ki (1 ≤ i ≤ 3) which are removed from P , are continuously flattened
so that the distances of pairs {p1, p2}, {r1, r2}, and {q1, q2} decrease to zero. Hence P
is continuously flattened with the straight-skeleton gluing, and B and F5 have no crease
during the process. �
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Fig. 4 (1) A pentagonal pyramid P and its straight skeleton subdivision; (2) the corresponding straight skeleton
subdivision of its unfolding; (3) the subset Q of P with creases for valley folds; (4) the moving creases for the
continuous flat folding process of P; (5) Pt for some 0 < t < 1 in the continuous flat folding process; (6) the
flat folded state P1.
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4 Application to convex polyhedra

We give an application of the existence of the continuous flat folding process of n-gonal
pyramids for 3 ≤ n ≤ 5 so that the n-gonal base has no crease during the process.

Theorem 4. Let P be a convex polyhedron. Then P is flattened continuously by using the
straight-skeleton gluing locally.

Proof. We prove Theorem 4 by mathematical induction on the number nP of vertices of a
convex polyhedron P .

If np = 4, then P is a pyramid with a triangular base. Hence it is flattened continuously
by the straight-skeleton gluing by Theorem 1.

Let k ≥ 4. Assume that any P with nP ≤ k vertices can be flattened continuously. Let P
be a convex polyhedron with nP = k + 1 vertices. Since the edge graph of P is planar,
there is a vertex v which is incident to at most five edges, which is a well known fact
obtained by the Euler formula for a planar graph. Denote the set of incident vertices to v
on P by Nv . Then the number of vertices in Nv is at most 5. Let P ′ be the convex hull of
the set of vertices of P except v.

Consider all planes passing through at least three vertices in Nv . Choose H among them
closest to the vertex v. H divides P into a pyramid Tv (without a base) and the remaining
part of P whose convex hull is denoted by Q. Since the boundary of Tv is a triangle, a
quadrilateral, or a pentagon, we can flatten Tv continuously and attach it to Q by Theo-
rems 1–3.

Let U (possibly an empty set) be the set of all intersections of the plane H and the interior
of some edge of P incident to v, that is, vertices of Q but not vertices of P . Then U has at
most two vertices since Nv has at most 5 vertices. If U is empty, then Q is congruent to P ′.
If U has only one point x , then x is incident to exactly three vertices wi ∈ Nv (1 ≤ i ≤ 3)
in Q. Let Tx be the pyramid with the apex x and the base 	w1w2w3. By flattening Tx

continuously, we obtain a convex polyhedron congruent to P ′.
Suppose U has two points x and y. If x and y are not adjacent to each other, then by
flattening Tx and Ty continuously we obtain a convex polyhedra congruent to P ′. If x and
y are adjacent to each other, then by flattening Tx continuously the degree of y changes to
four in the resulting convex polyhedron. So we use for y a similar process used for v, and
then the resulting polyhedron is congruent to P ′.
Since the number of vertices of P ′ is k, P ′ is flattened continuously by the assumption
for k on the mathematical induction. Therefore, P is flattened continuously by using the
straight-skeleton gluing locally. �

5 Some remarks

If a convex polyhedron Q has two parallel faces which includes all vertices of P and
which satisfies some additional condition, we can prove by Lemmas 1–2 that Q has a
continuous flat folding process so that those two faces are in parallel positions and have
no crease during the folding process. By using this fact any Archimedean polyhedron P
has a continuous flat folding process so that its specified two parallel faces are parallel and
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(1) (2)

Fig. 5 (1) Dotted line segments show how to slice the truncated octahe-
dron P by parallel planes; (2) the flat folded state of P .

have no crease during the process. The proofs are a little tedious, so we omit them. Figure
5(1) shows how to divide the truncated regular octahedron into parts by parallel planes to
have vertices on their boundary and to satisfy conditions. Figure 5(2) shows its flat folded
state.

By using the straight-skeleton gluing locally, we may find continuous flat folding processes
for non-convex polyhedra. We leave such problem for the future research.
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