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versidade Federal do Ceará, and her PhD from Universidade de Brası́lia in 2013. Cur-
rently, she is a professor of mathematics and statistics at the Universidade Federal de
Goiás. Her interests are transcendental number theory and diophantine equations.

1 Introduction
Transcendental number theory began in 1844 with Liouville’s proof [7] that if an algebraic
number α has degree n > 1, then there exists a constant C > 0 such that |α − p/q| >
Cq−n , for all p/q ∈ Q \ {0}. Using this result, Liouville gave the first explicit examples
of transcendental numbers, the so-called Liouville numbers: a real number ξ is called a
Liouville number, if for any positive real number ω there exist infinitely many rational
numbers p/q , with q ≥ 1, such that

0 <

∣∣∣∣ξ − p

q

∣∣∣∣ <
1

qω
.

.

Im Jahre 1844 gab Joseph Liouville ein erstes Beispiel einer transzendenten Zahl,
nämlich die Liouville-Zahl � = ∑

n≥1 10−n!. Fast ein Jahrhundert später schlug Kurt
Mahler vor, die reellen Zahlen in vier Kategorien einzuteilen, je nachdem wie gut sie
sich bei der Approximation durch algebraische Zahlen verhalten. Insbesondere zerfie-
len dabei die transzendenten Zahlen in drei Klassen, nämlich die S-, T - und U -Zahlen.
1952 bemerkte LeVeque, dass die U -Zahlen sich noch weiter, bezüglich ihrer Appro-
ximierbarkeit durch algebraische Zahlen vom Grad m, in die unendlich vielen dis-
junkten Klassen der Um-Zahlen unterteilen lassen. LeVeque zeigte insbesondere, dass
m
√

(3 + �)/2 eine Um -Zahl ist. In der vorliegenden Arbeit konstruieren die Autoren
Um-Zahlen für alle m auf besonders transparente Weise, nämlich als Produkt von � mit
gewissen algebraischen Zahlen vom Grad m.



An explicit family of Um -numbers 19

A classical example of a Liouville number is the Liouville constant �, defined as a decimal
with a 1 in each decimal place corresponding to n! and 0 otherwise. It can be represented
by the fast convergent series � = ∑∞

n=1 10−n! = 0.1100010 . . ..

In 1962, Erdős [4] proved that every nonzero real number can be written as the sum and
the product of two Liouville numbers. Since the set of the Liouville numbers has null
Lebesgue measure, one may interpret this as saying that in spite of being an “invisible”
set, the Liouville numbers are strategically disposed along the real line.

There exist several classifications of the transcendental numbers in the literature. One at-
tempt towards a classification was made in 1932 by Mahler [8], who proposed to subdivide
the set of real numbers into four classes (one of them being the class of algebraic numbers)
according to their properties of approximation by algebraic numbers. For instance, he split
the set of transcendental numbers into three disjoint sets named S-, T - and U-numbers.
Particularly, the U -numbers generalize the concept of Liouville numbers.

We denote by ω∗
n(ξ) as the supremum of the real numbers ω∗ for which there exist in-

finitely many real algebraic numbers α of degree n satisfying

0 < |ξ − α| < H(α)−ω∗−1,

where H(α) (so-called the height of α) is the maximum of absolute values of coefficients
of the minimal polynomial1 of α. The number ξ is said to be a U∗

m-number (according to
LeVeque [6]) if ω∗

m(ξ) = ∞ and ω∗
n(ξ) < ∞ for 1 ≤ n < m (m is called the type of the

U -number). We point out that we actually have defined a Koksma U∗
m-number instead of a

Mahler Um-number. However, it is well known that they are the same [3, cf. Theorem 3.6]
and [1]. We remark that the set of U1-numbers is precisely the set of Liouville numbers.

The existence of Um -numbers for all m ≥ 1, was first proved by LeVeque [6]. Indeed, he
was able to exhibit such examples as the mth root of some convenient Liouville numbers,
e.g., m

√
(3 + �)/4 is a Um -number, for all m ≥ 1.

In this note, we use the Gütting method [5] to prove that we can find explicit Um -numbers
in a more natural way: the product of certain m-degree algebraic numbers by �. Moreover,
we obtain an upper bound for ω∗

n . More precisely, our result is the following

Theorem 1. Let α be an algebraic number of degree m. Suppose that the minimal poly-
nomial P of α has a leading coefficient of the form 2a ·5b > 1, and p � P(0), for p = 2, 5,
and let � be the Liouville constant. Then α� is a Um-number, with

ω∗
n(α�) ≤ 2m2n + m − 1, f or n = 1, . . . ,m − 1. (1)

For example, m
√

3/2 · � is a Um-number for all m ≥ 1.

1Throughout the paper, a polynomial is said to be minimal if it is a primitive minimal polynomial over Z.
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2 Auxiliary Results

Before starting the proof of the Theorem, two technical results are needed.

Lemma 1. Given P(x) ∈ Z[x] with degree m and a/b ∈ Q\{0}. If Q(x) = am P(bx/a),
then

H(Q) ≤ max{|a|, |b|}mH(P),

where, as usual, H(P) denotes the maximum of absolute values of coefficients of P (the
so-called height of P).

Proof. If P(x) = ∑m
j=0 a j x j , then Q(x) = ∑m

j=0 a jb jam− j x j . Supposing, without loss

of generality, that |a| ≥ |b|, we have |a|m|a j | ≥ |a|m− j |a j ||b| j for 0 ≤ j ≤ m. Hence,
we are done. �

In addition to Lemma 1, we use the fact that algebraic numbers are not well approximable
by algebraic numbers.

Lemma 2 (Cf. Corollary A.2 of [3]). Let α and β be two distinct nonzero algebraic
numbers of degree n and m, respectively. Then we have

|α − β| ≥ (n + 1)−m/2(m + 1)−n/2 max

{
(n + 1)−(m−1)/2

2−n
,
(m + 1)−(n−1)/2

2−m

}

× H (α)−m H (β)−n.

Proof. A sketch of the proof can be found in Appendix A of [3]. �

3 Proof of the Theorem

For k ≥ 1, set

pk = 10k!
k∑

j=1

10− j !, qk = 10k! and αk = pk

qk
.

We observe that H(αk−1) < H(αk) = 10k! = H(αk−1)
k and

|� − αk | <
10

9
H(αk)

−k−1. (2)

Thus, setting γk = ααk , we obtain of (2)

|α� − γk| ≤ cH(αk)
−k−1, (3)

where c = 10|α|/9. It follows by Lemma 1 that H(αk)
m ≥ H(α)−1H(γk) and thus we

conclude that
|α� − γk | ≤ cH(α)(k+1)/mH(γk)

−(k+1)/m . (4)

Consequently, α� is a U -number with type at most m (since γk has degree m).
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We claim that H (αk) ≤ H (γk), for all k ≥ 1. In fact, let P(x) = ∑m
j=0 a j x j be the

minimal polynomial of α. In particular, P(α) = 0 and a simple calculation gives Q(γk) =
0, where Q(x) = ∑m

j=0 a j p
m− j
k q j

k x j ∈ Z[x]. Note that deg Q = m and γk is an m-
degree algebraic number. Thus, in order to prove that Q is the minimal polynomial of γk ,
we need to prove that Q is primitive. In other words, we must prove that

gcd(a0 pm
k , a1 pm−1

k qk, . . . , amqm
k ) = 1.

This follows immediately from the facts that gcd(a0, . . . , am) = 1 and the hypotheses on
a0 and am (yielding gcd(a0, qk) = gcd(am, pk) = 1), we leave the details to the reader.
Thus, in particular, we have that

H (γk) ≥ max{|a0||pk|n, |an ||qk|n} ≥ max{|pk|, |qk|} = H (αk)

as desired.

Now we use this together with Lemma 1 to obtain

H(γk+1) ≤ H(α)H(αk+1)
m = H(α)H(αk)

(k+1)m ≤ H(α)H(γk)
(k+1)m . (5)

Now, let γ be an n-degree real algebraic number, with n < m and H(γ ) ≥ H(γ1). Thus,
there exists a sufficient large k such that

H(γk) < H(γ )2m2
< H(γk+1) ≤ H(α)H(γk)

(k+1)m . (6)

On the other hand, Lemma 2 yields

|γk − γ | ≥ f (m, n)H(γ )−mH(γk)
−n, (7)

where f (m, n) is a positive number which does not depend on k and γ (see Lemma 2).
Therefore by the chain of inequalities in (6)

|γk − γ | ≥ f (m, n)H(α)−1/2mH(γk)
−(k+1)/2−n. (8)

By taking H(γ ) large enough, the index k satisfies

H(γk)
(k+1)/2−n ≥ 2c f (m, n)−1H(α)k+1/2m . (9)

Thus (4), (8) and (9) yield that |γk −γ | ≥ 2|α�−γk|. Therefore, for all n-degree algebraic
numbers with a sufficiently large weight, we have

|α� − γ | ≥ |γk − γ | − |α� − γk | ≥ 1

2
|γk − γ |

≥ f (m, n)

2
H(γ )−mH(γk)

−n >
f (m, n)

2
H(γ )−2m2n−m ,

where we used the left-hand side of (6). In conclusion, α� is a Um-number with ω∗
n(α�) ≤

2m2n + m − 1. This finishes the proof. �

We finish by pointing out that Alniaçik et al. [2] showed the existence of Um-numbers ξ
with sharper upper bounds for ω∗

n(ξ), where n = 1, . . . ,m−1. However, in their method ξ
is constructed as the limit of a rapidly converging sequence of m-degree algebraic numbers
and therefore could not be made explicit.
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ductibles à des irrationnelles algébriques, C. R. 18, 883–885 (1844).

[8] Mahler, K.: Zur Approximation der Exponentialfunktion und des Logarithmus I, J. Reine Angew. Math.
166, 118–136 (1932).

Ana Paula Chaves
Instituto de Matemática e Estatı́stica
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