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1 Introduction
It is a common occurence that sets of geometric objects themselves carry some kind of
geometric structure. A classical example for this is the set of all conformal structures on a
given compact surface. Riemann discovered that this set, the “space” of conformal struc-
tures, can be described by a finite number of parameters called moduli. The corresponding
parameter or moduli space turned out to be a very interesting geometric object in itself
whose study is the subject of Teichmüller theory.

On a more basic level, one can consider spaces consisting of objects of elementary ge-
ometry like (shapes of) polyhedra in Euclidean space. Thurston [Thu98] found that in
this case, the corresponding moduli space carries the structure of a complex hyperbolic
manifold, and he established a link with sets of triangulations of the 2-sphere.

Bavard and Ghys [BG92] considered sets of polygons in the Euclidean plane. Fix a com-
pact convex polygon P with n ≥ 3 edges and let P(P) be the space of convex polygons
with n edges parallel to those of P . The elements of P(P) are then determined by the
distances of the lines containing the edges from the origin, which gives n parameters. Fol-
lowing [Thu98], Bavard and Ghys proved that on the space of parameters, the area of the

.

Ein mächtiges Instrument bei der Untersuchung konvexer Mengen ist die Stützfunk-
tion, also die Distanz vom Ursprung zu den Stützebenen der Menge. Diese Definition
verwendet die Euklidische Struktur des umgebenden Raums. Wie sieht die Situation
aus, wenn man die Stützfunktion statt im Euklidischen Raum im Lorentz-Minkowski-
Raum betrachtet? Die vorliegende Arbeit geht dieser Frage am Beispiel von ebenen
konvexen Polygonen nach. Es stellt sich heraus, dass die Menge dieser Polygone selbst
eine interessante geometrische Struktur trägt. Ausgangspunkt bildet dabei eine Beob-
achtung von Christophe Barvard und Étienne Ghys aus dem Jahr 1992.
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polygons in P(P) is a quadratic form, and they computed its signature. The kernel of the
corresponding bilinear form has dimension 2 (due to the fact that area is invariant under
translations), and there is only one positive direction. Hence, up to the kernel, one gets a
Lorentzian signature. As a consequence, the set of elements of P(P) with area equal to
one, considered up to translations, can be identified with a subset of the hyperbolic space
H

n−3. This subset turns out to be a hyperbolic convex polyhedron of a special kind: it
is a simplex with the property that each hyperplane containing a facet meets orthogonally
all but two hyperplanes containing the other facets. Such simplices are called hyperbolic
orthoschemes. The dihedral angles of the orthoscheme can be computed from the angles
of P , and [BG92] contains a list of convex polygons P such that the orthoscheme obtained
from P is of Coxeter type, i.e., has acute angles of the form π/k, k ∈ N. This list was
previously known [IH85, IH90], but it appeared it was incomplete [Fil11].

In this paper we consider a class of non-compact plane polygons whose moduli space is
a spherical orthoscheme. These polygons, the t-convex polygons introduced in Section 3,
are best described not in terms of the Euclidean geometry on R

2, but as subsets of the
Lorentz plane. Instead of the area we will consider a suitably defined coarea that turns out
to be a positive definite quadratic form on the parameter space, an n-dimensional vector
space. Restricting to coarea one we obtain a subset of the unit sphere in that parameter
space, and this subset is shown to be a spherical orthoscheme. Moreover, any spherical
orthoschem can be obtained in this way.

It is amusing that in [BG92] Euclidean polygons led to Lorentz metrics and hyperbolic
orthoschemes, while in the present paper Lorentzian polygons give rise to Euclidean met-
rics and spherical orthoschemes. The author does not know if there is a way to obtain
Euclidean orthoschemes from spaces of plane convex polygons.

2 Background on the Lorentz plane
Recall that the Lorentz plane is R

2 equipped with the Lorentz inner product, that is the
bilinear form 〈(x1

x2

)
,
(y1
y2

)〉1 = x1y1−x2y2. A non-zero vector v can be space-like (〈v, v〉1 >
0), time-like (〈v, v〉1 < 0) or light-like (〈v, v〉1 = 0). The set of time-like vectors has two
connected components, and we denote the upper one, the set of future time-like vectors, by

F := {x ∈ R
2|〈x, x〉1 < 0, x2 > 0}.

The set of unit future time-like vectors is

H := {x ∈ R
2|〈x, x〉1 = −1, x2 > 0},

which will be the analog of the circle in the Euclidean plane, see Figure 1. In higher
dimension, the generalization of H together with its induced metric is a model of the
hyperbolic space, in the same way that the unit sphere for the Euclidean metric with its
induced metric is a model of the round sphere. In particular, if the angle between two
unit vectors in the Euclidean plane is seen as the distance between the two corresponding
points on the circle, the (Lorentzian) angle between two future time-like vectors x and y
is the unique ϕ > 0 such that

coshϕ = − 〈x, y〉1√〈x, x〉1〈y, y〉1 (1)
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Fig. 1: The cone F of future time-like vectors and the curve H of unit future time-like
vectors.

(see [Rat06, (3.1.7)] for the existence of ϕ). The angle ϕ is the distance on H (for the
induced metric) between x/

√−〈x, x〉1 and y/
√−〈y, y〉1.

F and H are globally invariant under the action of the linear isometries of the Lorentzian
plane, called hyperbolic translations:

Ht :=
(

cosh t sinh t
sinh t cosh t

)
, t ∈ R. (2)

In all the paper we fix a positive t . We denote by 〈Ht〉 the free group spanned by Ht .

3 t-convex polygons
Let a ∈ F . We will denote by

a⊥ := {x ∈ R
2|〈x, a〉1 = 〈a, a〉1}

the line that passes through a and is parallel to the 1-dimensional subspace orthogonal to
a under 〈·, ·〉1.
Definition 3.1. Let (η1, . . . , ηn), n ≥ 1, be pairwise distinct unit future time-like vectors
in the Lorentzian plane (i.e., ηi ∈ H), and let h1, . . . , hn be positive numbers. A t-convex
polygon P is the intersection of the half-planes bounded by the lines

(Hk
t (hiηi ))

⊥,∀k ∈ Z,∀i = 1, . . . , n.

The half-planes are chosen such that the vectors ηi are inward pointing. The positive
numbers hi are the support numbers of P.

A t-convex polygon is called elementary if it is defined by a single future time-like vector
η and a positive number h. Note that for each k, (Hk

t (hη))⊥ is tangent to hH (the upper
hyperbola with radius h). Hence a t-convex polygon is the intersection of a finite number
of elementary t-convex polygons.
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Example 3.2. Let t0 = sinh−1(1), so

Ht0 :=
( √

2 1
1

√
2

)
.

Let us denote by P1 the elementary t0-convex polygon defined by the vector η = (0
1

)
and

the number h = 1, see Figure 2a. The elementary t0-convex polygon P2 of Figure 2b is
obtained from p1 by a slightly change of η and h. Their intersection forms the t0-convex
polygon of Figure 2c.

Lemma 3.3. A t-convex polygon P is a proper convex subset of R2 contained in F ,
bounded by a polygonal line with a countable number of sides, and globally invariant
under the action of 〈Ht〉.
Proof. The group invariance is clear from the definition. P is the intersection of a finite
number of elementary t-convex polygons, so we only have to check the other properties in
the elementary case. Actually the only non-immediate one is that an elementary t-convex
polygon is contained in F . Let us consider an elementary t-convex polygon made from a
single future time-like vector η and a number h. Without loss of generality, consider that
h = 1. Let u = Hk

t (η) and v = Hk′
t (η) and let x be the intersection between u⊥ and v⊥.

As 〈x, u〉1 = 〈x, v〉1 = −1, x is orthogonal to u−v, which is a space-like vector (compute
its norm with the help of (1)). Hence x is time-like, and as u⊥ and v⊥ never meet the past
cone, x is future. It is easy to deduce that the t-convex polygon is contained in F .

Note that as a convex surface, a t-convex polygon can also be a t ′-convex polygon (for
example it is also invariant under the action of any subgroup of 〈Ht〉), but we will only
consider the action of a given 〈Ht〉.
Given a t-convex polygon P , we will require that the set of elementary t-convex polygons
such that their intersection gives P is minimal, i.e each ηi is the inward unit normal of
a genuine edge ei of P . The edge at the left (resp. right) of ei is denoted by ei−1 (resp.
ei+1). Let pi be the foot of the perpendicular from the origin to the line containing ei

(in particular, pi = hiηi ). Let pii+1 be the vertex between ei and ei+1. We denote by
hii+1 (resp. hii−1) the signed distance from pi to pii+1 (resp. from pi to pi−1i ): it is
non-negative if pi is on the same side of ei+1 (resp. ei−1) as P . The angle between ηi and
ηi+1 is denoted by ϕi . See Figure 3.

Lemma 3.4. With the notations introduced above,

hii+1 = hi coshϕi − hi+1

sinh ϕi
, hii−1 = hi coshϕi−1 − hi−1

sinhϕi−1
. (3)

Proof. By definition, hii+1 is non-negative when 〈pi − pi+1, ηi+1〉1 ≤ 0, i.e.,

−(hi+1 − hi coshϕi ) ≥ 0.

Hence

hii+1 = − hi+1 − hi coshϕi

|hi+1 − hi coshϕi |
√〈pii+1 − pi , pii+1 − pi 〉1.
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(a) A part of the t0-convex polygon P1. For the Lorentzian metric, all the edges have
equal length and all the angles between edges are equal.

(b) A part of the t0-convex polygon P2. For the Lorentzian metric, all the edges have
equal length and all the angles between edges are equal.

(c) A part of the t0-convex polygon obtained as the intersection of P1 and P2.

Fig. 2: To Example 3.2.
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Fig. 3: Notations for a t-convex polygon.

Up to an orientation and time orientation preserving linear isometry, one can take ηi = (0
1

)
.

In particular pi = ( 0
hi

)
and (pii+1)2 = hi hence

〈pii+1 − pi , pii+1 − pi 〉1 = (pii+1)
2
1.

We also have ηi+1 = (sinhϕi
coshϕi

)
, and as 〈pii+1, ηi+1〉1 = −hi+1 we get

(pii+1)1 = −hi+1 + hi coshϕi

sinhϕi
.

The proof for hii−1 is similar, considering ηi−1 = (− sinhϕi
coshϕi

)
.

4 The cone of support vectors

Let P be a t-convex polygon. Choose an edge and denote its inward unit normal by
η1. We denote the inward unit normal of the edge on the right by η2, and so on until
ηn+1 = Ht(η1). The edges with normals η1, . . . , ηn are the fundamental edges of P . Note
that with this labeling, if ϕi is the angle between ηi and ηi+1, we have

ϕ1 + ϕ2 + · · · + ϕn = t . (4)

The number hi (P) is the support number of the edge with normal ηi , and h(P) = (h1(P),
. . ., hn(P)) is the support vector of P . So P is identified with a vector of Rn , in such a
way that η1, . . . , ηn are in bijection with the standard basis ofRn . Of course P is uniquely
determined by its support vector.

Definition 4.1. Choose η ∈ H and let ϕ1, ϕ2, · · · , ϕn be positive numbers satisfying (4).
The cone of support vectors P(ϕ1, ϕ2, . . . , ϕn) is the set of support vectors of t-convex
polygons with inward unit normals η1 = η, ηi+1 = Hϕi (ηi ).



150 F. Fillastre

A priori the definition of P depends not only on the angles ϕi but also on the choice
of η. Actually choosing another starting η′ ∈ H, the hyperbolic translation from η to
η′ gives a linear isomorphism between the two resulting sets of support vectors. Hence
P(ϕ1, ϕ2, . . . , ϕn) could be defined as the set of t-convex polygons with ordered angles
(ϕ1, ϕ2, . . . , ϕn) up to hyperbolic translations. Note also that if s is a cyclic permutation,
then P(ϕs(1), . . . , ϕs(n)) is the same as P(ϕ1, . . . , ϕn).

It is possible to prove that P(ϕ1, ϕ2, . . . , ϕn) is a convex polyhedral cone with non-empty
interior in R

n , but this will be easier after a suitable metrization of Rn , that is the subject
of the next section.

5 Coarea

Definition 5.1. Let P ∈ P(ϕ1, ϕ2, . . . , ϕn). The coarea of P is

coarea(P) = 1

2

n∑
i=1

hi (P)�i (P)

where the sum is on the fundamental edges, and �i (P) = hii−1(P) + hii+1(P) is the
length of the i th fundamental edge (hence positive).

Geometrically coarea(P) is the area (in the sense of the Lebesgue measure) of a funda-
mental domain for the action of Ht on the complement of P in F . The main point is that
hyperbolic translations (2) have determinant 1, so they preserve the area, which is then
independent of the choice of the fundamental domain, see Figure 4. Moreover the area of
a triangle with a space-like edge e of length l and 0 as a vertex has area 1

2 lh, if h is the
Lorentzian distance between 0 and the line containing e. (To see this, perform a hyperbolic
translation such that e is horizontal and compute the area.) Note that the coarea depends
not only on the polygonal line P but also on the group 〈Ht〉, so it would be more precise
to speak about “t-coarea”, but as the group is fixed from the beginning, no confusion is
possible.

For a given cone of support vectors, the coarea can be formally extended to R
n with the

help of (3): for h ∈ R
n ,

coarea(h) = 1

2

n∑
i=1

hi�i (h)

with

�i (h) := hi coshϕi−1 − hi−1

sinhϕi−1
+ hi

hi coshϕi − hi+1

sinh ϕi
. (5)

If n = 1, there is only one angle between the unit inward normal η and its image under
Ht , which is equal to t , and coarea(h) = h2 cosh t−1

sinh t .

If n ≥ 2, we introduce the mixed-coarea

coarea(h, k) = 1

2

n∑
i=1

hi
ki coshϕi−1 − ki−1

sinhϕi−1
+ hi

ki coshϕi − ki+1

sinhϕi
,
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Fig. 4: The two shaded regions have the same area. This area is the coarea of the polygon.

which is the polarization of the coarea. Actually, it is clearly a bilinear form, and

coarea(ηk, η j ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if 2 ≤ | j − k| ≤ n + 1

−1

2

1

sinhϕk−1
if j = k − 1

−1

2

1

sinhϕk
if j = k + 1

1

2

(
coshϕk−1

sinhϕk−1
+ coshϕk

sinhϕk

)
if j = k

(6)

so coarea is symmetric. We also obtain the following key result.

Proposition 5.2. The symmetric bilinear form coarea is positive definite.

Proof. As coshϕk > 1, the matrix (coarea(uk, u j ))kj is strictly diagonally dominant, and
symmetric with positive diagonal entries, hence positive definite, see for example [Var00,
1.22].

The Cauchy–Schwarz inequality applied to support vectors of t-convex polygons gives the
following reversed Minkowski inequality:

Corollary 5.3. Let P, Q be t-convex polygons with parallel edges. Then

coarea(P, Q)2 ≤ coarea(P) coarea(Q),

with equality if and only if P and Q are homothetic: ∃λ > 0,∀i, hi (P) = λhi (Q).
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6 Spherical orthoschemes

P(ϕ1, ϕ2, . . . , ϕn) is clearly a cone in R
n . Moreover it is the set of vectors of positive

edge lengths, for the edge lengths defined by (5). From the definition of the coarea, for
h ∈ R

n , 2 coarea(ηi , h) = �i (h), so ηi is an inward normal vector to the facet of P defined
by �i = 0. So P is polyhedral, and it is convex because the ηi form a basis of Rn . Let
us denote by P(ϕ1, ϕ2, . . . , ϕn) the intersection of P(ϕ1, ϕ2, . . . , ϕn) with the unit sphere
of (Rn, coarea) (i.e., the set of support vectors of t-convex polygons with coarea one). It
follows that P is a spherical simplex. If n = 1, P is a point on a line, so from now on
assume that n > 1.

When n = 2, P is an arc on the unit circle with length θ satisfying

cos θ = sinhϕ2

sinh(ϕ1 + ϕ2)
.

When n = 3, P is a spherical triangle with acute inner angles, whose cosines are given by:

− coarea(ηk, ηk+1)√
coarea(ηk , ηk)

√
coarea(ηk+1, ηk+1)

=
√

sinh ϕk−1 sinhϕk+1

sinh(ϕk−1 + ϕk) sinh(ϕk + ϕk+1)
. (7)

When n ≥ 3, from (6) we see that each facet has an acute interior dihedral angle with
exactly two other facets, and is orthogonal to the other facets. Such spherical simplexes are
called acute spherical orthoschemes. See [Deb90, 5] for the history and main properties
of these very particular simplexes. Note that there are no spherical Coxeter orthoschemes,
because the Coxeter diagram of a spherical orthoscheme must be a cycle, and there is no
cycle in the list of Coxeter diagrams of spherical Coxeter simplexes. The list can be found
for example in [Rat06].

Let us denote by Uk the line through pk (so the angle between Uk and Uk+1 is ϕk), and by
λ the cross ratio [Uk−1,Uk,Uk+1,Uk+2], namely if uk−1, uk , uk+1, uk+2 are the intersec-
tions of the lines Ui with any line not passing through zero and endowed with coordinates
then (see [Ber94])

λ = [Uk−1,Uk ,Uk+1,Uk+2] = uk+1 − uk−1

uk+1 − uk

uk+2 − uk

uk+2 − uk−1
.

We have the formula (see [PY12])

sinhϕk−1 sinhϕk+1

sinh(ϕk−1 + ϕk) sinh(ϕk + ϕk+1)
= λ − 1

λ
= [Uk−1,Uk+2,Uk ,Uk+1].

From a given n-dimensional acute spherical orthoscheme O we can find angles (positive
real numbers) (ϕ1, ϕ2, . . . , ϕn) such that P(ϕ1, ϕ2, . . . , ϕn) is isometric to O. Let 0 <
A < 1 be the square of the cosine of an acute dihedral angle of O. We have first to find
ordered time-like lines U1,U2,U3,U4 such that [U1,U2,U3,U4] = 1

1−A , i.e., we have to
prove that the cross-ratio of the lines can reach any value > 1. Choose arbitrary distinct
ordered time-like U1,U2,U4. If U3 = U4 then [U1,U2,U3,U4] = 1, and if U3 = U2
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then [U1,U2,U3,U4] = +∞, so by continuity any given value > 1 can be reached for a
suitable U3 between U2 and U4. U1,U2,U3,U4 give angles ϕ1, ϕ2, ϕ3.

Now the other ϕk are easily obtained as follows. Given the next dihedral angle of O (they
can be ordered by ordering the unit normals to O, see [Deb90]), the square of its cosine
should be equal to

sinhϕ2 sinhϕ4

sinh(ϕ2 + ϕ3) sinh(ϕ3 + ϕ4)

and ϕ2, ϕ3 are known, so we get ϕ4. And so on.

7 Spherical cone-manifolds

Let n > 2 and consider the orthoscheme P = P(ϕ1, . . . , ϕn). A facet of P is isometric to
the space of t-convex polygons with η1, . . . , η̂i , . . . , ηn (η̂i means that ηi is deleted from
the list) as normals to the fundamental edges. The angles between the normals are

ϕ1, . . . , ϕi−2, ϕi−1 + ϕi , ϕi+1, . . . , ϕn .

This orthoscheme is also isometric to a facet of the orthoschemeP ′ obtained by permuting
ϕi−1 and ϕi in the list of angles. Hence we can glueP andP ′ isometrically along this com-
mon facet. We denote by C(ϕ1, . . . , ϕn) the (n − 1)-dimensional spherical cone-manifold
obtained by gluing in this way all the (n − 1)! orthoschemes obtained by permutations of
the list ϕ1, . . . , ϕn , up to cyclic permutations.

When n = 3, C(ϕ1, ϕ2, ϕ3) is isometric to a spherical cone-metric on the sphere with three
conical singularities, with cone-angles < π , obtained by gluing two isometric spherical
triangles along corresponding edges.

Let n ≥ 4. Around the codimension 2 face of C isometric to

N := C(ϕ1, . . . , ϕk + ϕk+1, . . . , ϕ j + ϕ j+1, . . . , ϕn+3)

are glued four orthoschemes, corresponding to the four ways of ordering (ϕk, ϕk+1) and
(ϕ j , ϕ j+1). As the dihedral angle of each orthoscheme at such codimension 2 face is π/2,
the total angle around N in C is 2π . Hence metrically N is actually not a singular set.
Around the codimension 2 face of C isometric to

S := C(ϕ1, . . . , ϕk + ϕk+1 + ϕk+2, . . . , ϕn+3)

are glued six orthoschemes corresponding to the six ways of ordering (ϕk, ϕk+1, ϕk+2).
Let � be the cone-angle around S. It is the sum of the dihedral angles of the six or-
thoschemes glued around it. As formula (7) is symmetric for two variables, � is two
times the sum of three different dihedral angles. A direct computation gives (k = 1 in the
formula)

cos(�/2) =
sinhϕ1sinhϕ2sinhϕ3−sinh(ϕ1+ϕ2+ϕ3)(sinhϕ1sinhϕ2+sinhϕ2sinhϕ3+sinhϕ3sinhϕ1)

sinh(ϕ1+ϕ2)sinh(ϕ2+ϕ3)sinh(ϕ3+ϕ1)
.
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During the computation we used that

sinh(a + b) sinh(b + c) − sinh a sinh c = sinh b sinh(a + b + c)

which can be checked with 1
2 (cosh(x + y) − cosh(x − y)) = sinh x sinh y. The analo-

gous formula in the Euclidean convex polygons case was obtained in [KNY99].

For example when ϕi = ϕ ∀i , we have

cos(�/2) = −2 cosh(ϕ)2 + sinh(ϕ)2

2 cosh(ϕ)3
.

The function on the right-hand side is a bijection from the positive numbers to ] − 1, 0[,
hence all the � ∈]2π, 3π[ (the dihedral angle θ ∈]π/3, π/2[) are uniquely reached. In
particular C is not an orbifold.

The cone-manifold C comes with an isometric involution which consists of reversing the
order of the angles (ϕ1, . . . , ϕn).

8 Higher-dimensional generalization

The generalization of t-convex polygons to higher-dimensional Minkowski spaces is as
follows. Let us consider the d-dimensional hyperbolic space H

d as a pseudo-sphere in
the d + 1-dimensional Minkowski space Md+1, and let 	 be a discrete group of linear
isometry of Md+1 such that Hd/	 is a compact hyperbolic manifold. A 	-convex poly-
hedron is, given η1, . . . , ηn ∈ H

d and positive numbers h1, . . . , hn , the intersection of
the future sides of the space-like hyperplanes (γ (hiηi ))

⊥ ∀i,∀γ ∈ 	. The mixed-coarea
is generalized as a “mixed covolume”. For details and computation of the signature, see
[Fil13]. Actually for a given set of ηi , many combinatorial types may appear, and one has
to restrict to type cones (cones of polyhedra with parallel facets and same combinatorics).
It should be interesting to investigate the kind of spherical polytopes that appear.

Another related question is to look at the quadratic form given by the face area of the
polyhedra (in a fundamental domain) and its relations with the moduli spaces of flat metric
with conical singularities of negative curvature on compact surfaces of genus > 1 (the
quotient of the boundary of a 	-convex polyhedron is isometric to such a metric).

The analogous questions in the convex polytopes case are the subject of [FI13]. The
moduli space of flat metrics on the sphere was studied in [Thu98].
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