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Consider the comparison between (a + b)p and a p + bp, where a, b and p are positive. It
is elementary that (a + b)p > a p + bp for p > 1 and the opposite holds for 0 < p < 1
(let b/a = x ≤ 1: then for p > 1, we have (1 + x)p > 1 + x > 1 + x p). Let us write

Fp(a, b) = (a + b)p − a p − bp.

For p = 2, 3, we have the identities

F2(a, b) = 2ab, F3(a, b) = 3(a2b + ab2).

Also, when b/a is small, (a + b)p is approximated by a p + pa p−1b. These facts suggest
that it is a natural idea to look for estimates of Fp(a, b) in terms of

G p(a, b) = a p−1b + abp−1.

Here we will seek to determine, for each p > 0, the best constants Ap , Bp such that

ApG p(a, b) ≤ Fp(a, b) ≤ BpG p(a, b) (1)

.

In der Funktionalanalysis oder bei der Untersuchung nichtlinearer partieller Differen-
tialgleichungen spielen oft elementare Ungleichungen im Zusammenhang mit p-ten
Potenzen von Termen eine Rolle. Bekannt ist etwa die Ungleichung von Clarkson. Der
Autor der vorliegenden Arbeit geht aus von der Ungleichung (a + b)p > a p + bp für
positive Zahlen a, b und p > 1. Für 0 < p < 1 gilt just die umgekehrte Ungleichung.
Untersucht wird nun der Defekt (a+b)p−a p−bp =: Fp(a, b). Da F2(a, b) = 2ab und
F3(a, b) = 3(a2b+ab2) gilt, liegt es nahe, Fp(a, b) durch G p(a, b) = a p−1b+abp−1

abzuschätzen. Es stellt sich heraus, dass die bestmöglichen Konstanten Ap und Bp in
der Ungleichung ApG p(a, b) ≤ Fp(a, b) ≤ BpG p(a, b) in erstaunlich verwickelter
Weise von p abhängen.
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for all a, b > 0. As we shall see, it is quite easy to establish a version of the right-hand
inequality with non-optimal Bp; weak upper estimates of this kind have undoubtedly been
stated and used many times. However, lower estimates are less well known, and despite
the wealth of known results on sums of pth powers, (e.g., [1, 2, 3] and numerous research
articles), I am not aware of any consideration of the best constants in the existing literature.
The solution, given in Theorem 1 below, turns out to be surprisingly intricate, with Ap and
Bp switching between different expressions at the values 1, 2 and 3 of p, in a way that
indicates that upper and lower bounds may emerge from the same process of reasoning.
The problem is reduced to a single-variable one by the substitution x = b/a: it is easily
checked, on dividing by a p, that (1) is equivalent to

Apgp(x) ≤ f p(x) ≤ Bpgp(x) (2)

for x > 0, where

f p(x) = (1 + x)p − 1 − x p, gp(x) = x + x p−1.

Write also h p(x) = f p(x)/gp(x). Clearly, h p(1) = 2p−1 − 1: This quantity will play
an important part in our considerations: we denote it by Cp . So certainly we have Ap ≤
Cp ≤ Bp. Also, for all x > 0, we have h1(x) = 0, h2(x) = 1 and h3(x) = 3.
Lemma 1. We have h p(1/x) = h p(x), hence if (2) holds (for a certain Ap, Bp) for
0 < x ≤ 1 (or for x ≥ 1), then it holds for all x > 0.
Proof. Clearly, f p(x) = x p f p(1/x), and similarly for gp. �
Lemma 2. We have

lim
x→0+ h p(x) =

⎧⎪⎨
⎪⎩

p if p > 2,

1 if p = 2,

0 if 0 < p < 2.

Proof. The cases p = 1, 2 are trivial. Let p > 2. Then f p(0) = gp(0) = 0, also
f ′
p(0) = p and g′

p(0) = 1. By L’Hôpital’s rule, limx→0+ h p(x) = p.

Next, let 1 < p < 2. We still have f ′
p(0) = p, hence f p(x)/x → p as x → 0+. Also,

gp(x) > x p−1, so x/gp(x) < x2−p → 0 as x → 0+. Hence h p(x) → 0 as x → 0+.
Finally, let 0 < p < 1. Then −x p < f p(x) < 0 and gp(x) > x p−1, so |h p(x)| < x . �
Before dealing with the general case, we show that there is a quick solution to our problem
for integer values of p:

Proposition 1. For integers p ≥ 3, the best constants in (1) and (2) are: Ap = p,
Bp = Cp.

Proof. By Lemma 1, it is sufficient to consider (2) with 0 ≤ x ≤ 1. By adding together
two copies of the binomial expansion, we have

2 f p(x) =
p−1∑
r=1

(
p

r

)
(xr + x p−r ).

For 2 ≤ r ≤ p − 2 and 0 ≤ x ≤ 1, we have

(x + x p−1)− (xr + x p−r ) = (1 − xr−1)(x − x p−r ) ≥ 0.
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Hence

2 f p(x) ≤
p−1∑
r=1

(
p

r

)
(x + x p−1) = (2p − 2)(x + x p−1),

so f p(x) ≤ Cpgp(x). As we have seen, equality occurs when x = 1. It is also clear from
the binomial expansion that f p(x) ≥ p(x + x p−1) = pgp(x), and Lemma 2 shows that p
is the best constant in this inequality. �
We now reveal the full solution to our problem. It is rather more interesting than one might
have expected in the light of the previous result.

Theorem 1. The best constants Ap, Bp in (1) and (2) are as follows:

p Ap Bp

[3,∞) p Cp

(2, 3) Cp p

2 1 1

(1, 2) 0 Cp

(0, 1] Cp 0

Before giving the proof, we record some comments on the result.
(1) The reversals at 1, 2 and 3 are not altogether surprising, given that h p(x) is constant

for these values of p.
(2) When 0 < p < 1, both f p(x) and Cp are negative.
(3) At p = 2, Ap is discontinuous from below and Bp discontinuous from above,

reflecting the discontinuity in Lemma 2.
(4) The statement incorporates the fact, not instantly transparent, that Cp ≥ p for p ≥ 3

and Cp ≤ p for 2 ≤ p ≤ 3. To see this directly, note that Cp is a convex function
of p and C2 = 1, C3 = 3. The linear function interpolating these two values is
h(p) = 2p − 3, so for 2 ≤ p ≤ 3, we have Cp ≤ 2p − 3 ≤ p, while for p ≥ 3, we
have Cp ≥ 2p − 3 ≥ p.

Lemma 3. If f is convex on [0,∞) and f (0) = 0, then f (x)/x is increasing for x > 0.
If f is concave, then f (x)/x is decreasing.

Proof. Assume that f is convex. Let 0 < x < y and write λ = x/y. Then x =
(1 − λ)0 + λy, so f (x) ≤ (1 − λ) f (0)+ λ f (y) = λ f (y), hence f (x)/x ≤ f (y)/y. �
Lemma 4. Let 0 ≤ x ≤ 1. Then (1 + x)p − 1 ≤ (2p − 1)x for p ≥ 1 and p ≤ 0, and
the reverse inequality holds for 0 ≤ p ≤ 1.

Proof. Let f (x) = (1 + x)p − 1. For p ≥ 1 and p ≤ 0, f is convex, so by Lemma 3,
f (x)/x ≤ f (1) = 2p − 1. For 0 < p < 1, f is concave, so the reverse inequality holds.

�
With a term discarded on each side, Lemma 4 implies that f p(x) ≤ (2p − 1)gp(x) for all
p > 1. So it gives a (very quick) proof that Bp ≤ 2p − 1 for such p. This weaker version
is surely well known, and adequate for some applications.
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Before continuing with the proof of Theorem 1, we digress briefly to show that another
application of Lemma 3 gives a complete solution to the following natural variant of the
original problem.
Suppose that we stipulate that a ≥ b and seek to compare Fp(a, b) with the term a p−1b
on its own. In other words, we look for the best constants Dp , Ep such that

Dpa
p−1b ≤ Fp(a, b) ≤ Epa

p−1b (3)

for a ≥ b > 0. Equivalently, Dpx ≤ f p(x) ≤ Epx for 0 ≤ x ≤ 1.

Proposition 2. For p ≥ 2, we have Dp = p and Ep = 2p − 2 (= 2Cp). For 1 < p ≤ 2,
these two values are reversed.

Proof. Apply Lemma 3 to f p(x). For p ≥ 2 and x > 0,

f ′′
p (x) = p(p − 1)(1 + x)p−2 − p(p − 1)x p−2 ≥ 0,

so f p is convex. By Lemma 3, f p(x)/x is increasing. So its greatest value on (0, 1] is
f p(1) = 2p − 2, and its infimum is limx→0+ f p(x)/x = f ′

p(0) = p. For 1 < p < 2, f p

is concave, so the two bounds are interchanged. �
Note. When 1 < p < 2, x p−1 is larger than x , so it is really more natural to compare
f p(x) with x p−1. We saw in Lemma 2 that infx>0[ f p(x)/x p−1] = 0 for such p. For the
upper bound, note that since f p(x)/x is decreasing, we have f p(x) ≤ (2p −2)x for x ≥ 1.
Substituting 1/x for x , we deduce that f p(x) ≤ (2p − 2)x p−1 for 0 < x ≤ 1.

We return to the proof of Theorem 1.

Lemma 5. Let φ(p) = p2p−2 − 2p + 2. Then φ(p) ≥ 0 for p ≥ 3 and p ≤ 2, and
φ(p) ≤ 0 for 2 ≤ p ≤ 3.

Proof. Let ψ(p) = 22−pφ(p) = p − 4+ 23−p. Then ψ(p) is a convex function of p, and
ψ(2) = ψ(3) = 0. Hence ψ(p) ≥ 0 for p ≥ 3 and p ≤ 2, and ψ(p) ≤ 0 for 2 ≤ p ≤ 3.

�
Proof of Theorem 1. First, it follows from our opening observations and Lemma 2 that
Ap = 0 for 1 < p < 2 and Bp = 0 for 0 < p < 1.
Next, let �p(x) = f p(x) − pgp(x). We show that for all x > 0, �p(x) ≥ 0 if p ≥ 3
and �p(x) ≤ 0 if 2 < p ≤ 3. With Lemma 2, it then follows that Ap = p for p ≥ 3 and
Bp = p for 2 < p ≤ 3. Since �p(0) = 0, these inequalities will follow if similar ones
are satisfied by �′

p(x). Now

1

p
�′

p(x) = (1 + x)p−1 − x p−1 − 1 − (p − 1)x p−2.

For p > 2, �′
p(0) = 0. We proceed to the second derivative and reason similarly:

1

p(p − 1)
�′′

p(x) = (1 + x)p−2 − x p−2 − (p − 2)x p−3

= x p−2

[(
1 + 1

x

)p−2

− 1 − p − 2

x

]
.
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It is well known that (1 + y)q ≥ 1 + qy for y > 0 if q ≥ 1 and the reverse inequality
holds if 0 < q < 1. Hence �′′

p(x) ≥ 0 if p ≥ 3, and �′′
p(x) ≤ 0 if 2 < p ≤ 3, so similar

inequalities are satisfied by�′
p(x) and �p(x), as required.

Now let �p(x) = f p(x) − Cpgp(x). We show that for all x > 0, �p(x) ≤ 0 for p in
[3,∞) and (1, 2) and �p(x) ≥ 0 for p in (2, 3) and (0, 1). Since f p(1) = Cpgp(1), it
then follows that Bp = Cp in the first two cases and Ap = Cp in the second two. By
Lemma 1, it is sufficient to prove the stated inequalities for x ≥ 1, and since �p(1) = 0,
it is enough to prove similar inequalities for � ′

p(x). (Note that no such statement applies
for 0 < x < 1, since �p is zero at 0 and 1.) Now

� ′
p(x) = p(1 + x)p−1 − px p−1 − Cp[1 + (p − 1)x p−2].

In particular,� ′
p(1) = p2p−1 − p− pCp = 0. Again we proceed to the second derivative:

1

p − 1
� ′′

p(x) = p(1 + x)p−2 − px p−2 − (p − 2)Cpx
p−3.

Write this as x p−2Sp(x), where

Sp(x) = p

(
1 + 1

x

)p−2

− p − (p − 2)Cp

x
.

Now write y = 1/x , so 0 < y ≤ 1. By Lemma 4, for p ≥ 3 and p < 2,

Sp(x) = p
[
(1 + y)p−2 − 1

] − (p − 2)Cpy

≤ [
p(2p−2 − 1)− (p − 2)Cp

]
y.

By Lemma 5, we have, again for p ≥ 3 and p < 2,

p(2p−2 − 1)− (p − 2)Cp = 2p − 2 − p2p−2 ≤ 0,

Hence � ′′
p(x) ≤ 0 for p ≥ 3 and 1 < p < 2, while � ′′

p(x) ≥ 0 for 0 < p < 1, because of
the factor p − 1. For 2 < p < 3, both inequalities reverse, giving � ′′

p(x) ≥ 0. Our proof
is complete. �

Question. Is h p(x) increasing on (0, 1] for p in (3,∞) and (1, 2), and decreasing for p
in (2, 3) and (0, 1)? Theorem 1 would, of course, be an immediate consequence. The fol-
lowing remark may illuminate this question a little. As we saw in Proposition 2, x/ f p(x)
is decreasing on (0,∞) for p ≥ 2 and increasing for 1 ≤ p ≤ 2. By the substitution
y = 1/x , we deduce that x p−1/ f p(x) does the opposite. So in this way, 1/h p(x) is ex-
pressed as the sum of two functions, one increasing and one decreasing, which suggests
that the question of its monotonicity is more delicate.

An application to the Banach spaces �p. For p ≥ 1, the (real) Banach sequence space
�p is the space of infinite real sequences x = (xn) such that

∑∞
n=1 |xn|p convergent (say

to Np(x)), with the norm ‖x‖p = Np(x)1/p. For non-negative sequences a, b in �p ,



Inequalities comparing (a + b)p − ap − bp and ap−1b + abp−1 161

we clearly have ‖a + b‖p
p ≥ ‖a‖p

p + ‖b‖p
p , with equality occurring when a and b are

“orthogonal” in the sense that for each n, we have anbn = 0 (so that either an or bn is 0).
Equality also occurs when p = 1. Note that ‖a+b‖p

p −‖a‖p
p −‖b‖p

p = ∑∞
n=1 Fp(an, bn).

Theorem 1 translates into the following estimation of how close we are to equality when
a and b are nearly orthogonal, in the sense that all the products anbn are small, or when p
is close to 1.

Proposition 3. Let a, b be non-negative elements of �p, and (by extension of our previous
notation), let

G p(a, b) =
∞∑

n=1

(a p−1
n bn + anb

p−1
n ).

Then, with Ap, Bp as given in Theorem 1, we have

ApG p(a, b) ≤ ‖a + b‖p
p − ‖a‖p

p − ‖b‖p
p ≤ BpG p(a, b).

We can derive a second, more specific, result of this type from Proposition 2.

Proposition 4. Let a, b be non-negative elements of �p and let δ ∈ [0, 1] be such that for
each n, either bn ≤ δan or an ≤ δbn. Then

‖a + b‖p
p ≤ (1 + δEp)(‖a‖p

p + ‖b‖p
p),

where

Ep =
{

2p − 2 for p ≥ 2,

p for 1 ≤ p ≤ 2.

Proof. Let N1 = {n : an ≥ bn} and N2 = {n : bn > an}. By Proposition 2, we have for
n ∈ N1

Fp(an, bn) ≤ Epa
p−1
n bn ≤ δEpa

p
n .

Hence
∑

n∈N1
Fp(an, bn) ≤ δEp

∑
n∈N1

a p
n ≤ δEp

∑∞
n=1 a p

n . Adding a similar estimate
for N2, we obtain our statement. �
Note. In the case 1 ≤ p ≤ 2, by applying the note on Proposition 2 and comparing with
anb

p−1
n , we obtain an alternative estimation with δp replaced by (2p − 2)δ p−1. This is not

always stronger, but it gives the correct value 0 when p = 1.
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