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Introduction

What can we deduce about the roots of a real polynomial in one variable by only consid-
ering the signs of its coefficients?

If we restrict our attention to the positive roots, the answer is: nothing more than what the
classical Descartes rule of sign states. This is a precise mathematical claim that needs a
proof. We give it in Section 3, after some due preliminaries.

If we are interested in the negative roots also, and concentrate on the combined numbers
of positive and negative roots, there is nothing as simple to tell. In Section 5, we show how
the situation complicates with the degree, by giving a complete study up to degree 6.

Section 4 is a little interlude about discriminants and trinomials.

.

Die Vorzeichenregel von Descartes besagt: Die Anzahl P der positiven Nullstellen
(gezählt mit ihrer Vielfachheit) eines reellen Polynoms p(x) ist gleich der Zahl der Vor-
zeichenwechsel seiner Koeffizientenfolge oder um eine gerade natürliche Zahl kleiner
als diese. So hat insbesondere ein Polynom mit nur einem Vorzeichenwechsel genau
eine positive Nullstelle. Durch Betrachten von p(−x) ergibt sich eine entsprechende
Aussage für die Anzahl N negativer Nullstellen von p(x). Umgekehrt kann man fra-
gen, ob in jedem Fall ein Polynom mit gegebener Vorzeichenfolge existiert, welches
eine damit kompatible Anzahl (P, N) positiver respektive negativer Nullstellen auf-
weist. Die Autoren behandeln diese und andere Fragen und verallgemeinern zudem
die Regel von Descartes auf Linearkombinationen beliebiger reeller Potenzen.
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1 Coefficients and positive roots

It is convenient to consider that an analytic function in one variable has a multiset of
roots. A multiset is defined just as a set, except that identical elements are allowed. The
cardinality of a multiset is the number of its elements. The multiplicity of an element is
the cardinality of the sub-multiset of the elements identical to it.

Consider expressions of the type

Y = a0x
α0 + a1x

α1 + · · · + anxαn , (1)

with real exponents α0 < α1 < · · · < αn and non-zero real coefficients a0, . . . , an .
The sequence of signs of an expression (1) is the ordered list σ0, . . . , σn of the signs
σi = |ai |−1ai . A variation occurs in such a sequence when σi = −σi+1. For example
the sequence 1,−1, 1, 1 has two variations.

Proposition 1. On one hand, let us prescribe the number of terms, the exponents and the
signs of the coefficients in an expression (1), and denote by k the number of variations of
the sign sequence. On the other hand, let us give arbitrarily a multiset of positive numbers,
and call p its cardinality. There exists an expression (1), as prescribed, whose multiset of
positive roots is the given one, if and only if k − p is even and non-negative.

This statement gives an “if and only if ” form to the classical Descartes rule of signs. It
continues previous works. In 1998, Anderson, Jackson and Sitharam [1] proposed exam-
ples of polynomials with any sequence of signs, and with any number p of positive roots,
provided that k − p is even and non-negative. In 1999, Grabiner [5] extended this result by
giving also examples of polynomials with missing terms (i.e., zero coefficients for some
of the intermediate integer powers of x). Our Proposition 1 strengthens this statement, by
extending these previous results to real exponents, and by showing that when a given se-
quence of signs allows p positive roots, it indeed allows any multiset of positive roots of
cardinality p. Surprisingly the proof, as presented below, remains very elementary.

2 Proof of the “only if ” part

This proof is well known and we give it only for completeness. We assume that the given
multiset is the multiset of positive roots of Y .

(i) The parity of k decides if the sign of a0 is or is not the sign of an . The parity of p
decides if the sign of Y is or is not the same at the two ends, i.e., at 0+ and at +∞.
Obviously these boundary signs are respectively the signs of a0 and of an . Thus k− p
is even.

(ii) Let m and m′ be the cardinalities of the respective multisets of positive roots of a
function f and of its derivative f ′. Then m ≤ m′ + 1.

(iii) One multiplies Y by x−α , computes the derivative in x and observes the resulting
sequence of signs. The signs corresponding to the exponents αi < α are changed,
while those corresponding to αi > α are not changed. We can delete any given
variation of sign without touching the others by choosing α in some interval of the
form ]αi , αi+1[.
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To conclude, we prove that p ≤ k by an induction on k. If k = 0 then p = 0. If Y has k
variations, argument (iii) shows that (x−αY )′ has k − 1 variations for some choice of α.
Argument (ii) gives the required estimate on the respective numbers of roots. �

These arguments are actually older than usually thought. Argument (ii) was given in 1741
by de Gua and again in 1798 by Lagrange. Argument (iii) and the statement of the “only
if ” part are given by de Gua in the case of integer exponents, by Laguerre in the case of
real exponents1. Laguerre is explicit about the parity conclusion (i), which is obvious. If
the statement of the “only if ” part omits this conclusion, then it remains correct if the roots
are counted without multiplicity2.

3 Proof of the “if ” part

We call (σ0, . . . , σn) the prescribed sequence of signs (with k variations). We assume that
the cardinality p of the given multiset of positive numbers is such that k− p is non-negative
and even. We look for an expression (1) with σi ai > 0 for all i , such that the given multiset
is the multiset of its positive roots. We will be able to find such an expression with the
additional constraint that ai = ai+1 when σi = σi+1. We collect the terms in (1) according
to this constraint. We set i0 = 0 and call i1, i2, . . . , ik the integers i j such that i j−1 < i j ,
σi j −1 �= σi j , σik = σn . We call b0, b1, . . . , bk the common values of the coefficients:

b j = ai j = ai j +1 = · · · = ai j+1−1.

We set
ϕ j (x) = xαi j + x

αi j +1 + · · · + x
αi j+1−1 .

Now we look for a (b0, b1, . . . , bk) such that σ0b0 > 0, bibi+1 < 0 and the expression

Y = b0ϕ0(x) + b1ϕ1(x) + · · · + bkϕk(x)

has the required multiset of positive roots.

We begin with the case where all the positive roots x1, . . . , xp are simple. The column
vector (b0, . . . , bk) should be in the kernel of the matrix

� =

⎛
⎜⎜⎝

ϕ0(x1) ϕ1(x1) · · · ϕk(x1)
ϕ0(x2) ϕ1(x2) · · · ϕk(x2)

· · ·
ϕ0(xp) ϕ1(xp) · · · ϕk(xp)

⎞
⎟⎟⎠ .

This p × (k + 1) matrix has a non-trivial (b0, . . . , bk) in its kernel since p ≤ k.

1See [6] pp. 89–92, [10] p. 195, [11]. Jensen [8] noticed the similarity of de Gua’s and Laguerre’s arguments.
Instead of derivation, de Gua used Johan Hudde’s operation, which is described as a term by term multiplication
of the polynomial and an arithmetic progression. The modern reader will simply compare this with the operation
Y �→ x−m+1(xmY )′.
2Authors of the 18th century used to count the roots with their multiplicity and to omit the parity conclusion.

Incidentally, many authors following Cajori [2] attribute the parity conclusion to Gauss [4] in 1828. This is very
strange as firstly, this conclusion is obvious, secondly, Fourier published it in 1820 (see [3] p. 294) and thirdly, it
is absent from Gauss’ paper.
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If p = k, the “only if ” part shows that the coefficients bi are non-zero, that their signs
alternate and that there is no other positive root. This makes an (a0, . . . , an) such that Y
has the prescribed set of positive roots.

If 1 ≤ p < k, observe that the p×p submatrix formed by the first p columns of � is invert-
ible. If its determinant were zero we could find a non-trivial column vector (c0, . . . , cp−1)

in its kernel. But
∑p−1

0 ciϕi (x) would have a root at each x j . It would have p roots and at
most p − 1 variations, which contradicts what we proved in the “only if ” part.

So for any given (bp, . . . , bk) there is a unique (b0, . . . , bp−1), computed by Cramer’s
rule, such that (b0, . . . , bk) is in the kernel of �. We introduce a real parameter ε and
take bi (ε) = (−1)k−iσnε, p ≤ i < k and bk(ε) = σn . The unique column vector(
b0(ε), . . . , bp−1(ε), bp(ε), . . . , bk(ε)

)
in the kernel of � is such that each of its k + 1

components is a polynomial in ε, of first degree.

Set Yε(x) = b0(ε)ϕ0(x) + · · · + bk(ε)ϕk(x). We have Yε(x j ) = 0 for j = 1, . . . , p. Since
Y0(x) = b0(0)ϕ0(x) + · · · + bp−1(0)ϕp−1(x) + bk(0)ϕk(x), the p + 1 coefficients in this
expression are non-zero and have alternating signs, according to the “only if ” part, which
at the same time establishes that Y0 cannot have any other positive root than the x j ’s. As
k − p is even and bk has the prescribed sign, the bi (0)’s, i < p, have the prescribed signs,
and the same is true of bi (ε) for any small enough ε. Now, the bi (ε)’s, p ≤ i < k, have
the prescribed signs for any positive ε. Thus Yε has the prescribed sign sequence for any
sufficiently small positive ε.

Consider Yε/Y0. This quotient is analytic in x ∈ ]0,+∞[, as shown by expanding nu-
merator and denominator in Taylor series around x = x j and by simplifying the factors
(x−x j ). As ε → 0, Yε/Y0 → 1 for any x ∈ ]0,+∞[. This convergence is indeed uniform,
the behavior of the fraction at zero and at infinity being controlled by the leading terms of
the numerator and the denominator. Thus Yε has no other positive root for a sufficiently
small ε. The problem is solved in the case of simple roots.

In the cases with multiple roots the construction and the proofs are exactly the same,
except that � has, e.g., the row

(
ϕ′

0(x1), . . . , ϕ
′
k(x1)

)
if x1 is a multiple root, the row(

ϕ′′
0 (x1), . . . , ϕ

′′
k (x1)

)
if it is at least a triple root, etc.

If finally p = 0, k is even and we can build a Y without positive root. We simply choose a
sufficiently small positive ε and take b0(ε) = σ0, bk(ε) = σ0 and bi (ε) = (−1)iεσ0. �

4 Further information about trinomials

Etymologically a trinomial is simply the sum of three monomials, and there is no restric-
tion on the degree. Trinomials with unprescribed degree were studied early in the history
of algebraic equations (see [14], pp. 11 and 24). They are natural objects in the context of
Laguerre’s extension of Descartes’ rule to real exponents, as well as in the context of Kho-
vansky’s theory of fewnomials [9], and are consequently the object of recent studies. In
2002, Haas [7], Li, Rojas & Wang [12] proved that the optimal upper bound on the number
of roots in the positive quadrant of a system of two trinomials in two variables is five.

We were not able to find the following elegant and elementary formula in any of these old
or recent studies.



190 A. Albouy and Y. Fu

Proposition 2. A trinomial axα +bxβ + cxγ , α < β < γ , a > 0, c > 0, b < 0, is positive
on ]0,∞[ if and only if

( a

γ − β

)γ−β( b

α − γ

)α−γ ( c

β − α

)β−α
> 1.

Remark. The discriminant of axα + bxβ + cxγ is b2 − 4ac if (α, β, γ ) = (0, 1, 2). It is
−c(4b3 +27ca2) if (α, β, γ ) = (0, 1, 3). It is c2(−27b4 +256ca3) if (α, β, γ ) = (0, 1, 4)
and 16ac(4ca−b2)2 if (α, β, γ ) = (0, 2, 4). These formulas are quite familiar. The general
formula in the proposition gives in each case the main factor.

Proof. The formula may be obtained by a direct computation, where there occur unex-
pected simplifications. We will present a short matrix algebra argument, basically the same
as in the previous section. Consider the trinomial Y = axα + bxβ + cxγ . We determine
(a, b, c) such that Y has a double root at x1. We find that (a, b, c) should be in the kernel
of

� =
(

xα
1 xβ

1 xγ
1

αxα−1
1 βxβ−1

1 γ xγ−1
1

)
,

which means
axα

1

γ − β
= bxβ

1

α − γ
= cxγ

1

β − α
.

We set

A = a

γ − β
, B = b

α − γ
, C = c

β − α
,

which are positive numbers according to the hypotheses of the proposition, and continue
the computation by eliminating x1, which gives the expected condition

Aγ−β Bα−γ Cβ−α = 1

for a double root. Now a mere study of Aγ−β Bα−γ Cβ−α as a function of b gives the
proposition. �

For completeness, note that under the condition Aγ−β Bα−γ Cβ−α = 1 the double root is
located at

x1 =
(C

B

)1/(β−γ ) =
( A

C

)1/(γ−α) =
( B

A

)1/(α−β)
.

5 Combining positive and negative roots

If we just focus on the positive roots of a given polynomial Y , Proposition 1 tells us that
there is nothing we can add to Descartes’ rule of signs. All that can be deduced from the
sign sequence of Y is the upper bound and the parity of P , the cardinality of the multiset
of positive roots. By changing x to −x , the same can be said on N , the cardinality of the
multiset of negative roots of Y . But let us consider the constraints on (P, N).
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Consider a polynomial Y (x) of degree 4 with sign sequence +,−,−,−,+. By Descartes’
rule P = 0 or 2. If we change x to −x the sign sequence becomes +,+,−,+,+. Thus
N = 0 or 2. Grabiner [5] points out that (P, N) = (0, 2) is impossible for such a Y (x).

The proof does not require any computation. Because the constant term Y (0) is positive,
P = 0 implies Y > 0 for x > 0. But the odd part of Y is negative when x > 0. So the
even part is positive. For x < 0 the odd and the even parts are then positive. We must have
N = 0. �

Consider an expression (1) as in Proposition 1, where the αi ’s are non-negative integers,
i.e., Y (x) is a polynomial. Given the sequence of signs σ0, . . . , σn , Grabiner proves3 that
all the (P, N)’s produced as follows are possible. One chooses any subset of {1, . . . , n−1}
and “erases” the corresponding σi ’s from the sequence of signs. The number of variations
in the resulting sequence gives P . One then considers the modified sequence of signs
σ0(−1)α0, σ1(−1)α1, . . . , σn(−1)αn and erases from it the signs with index in the same
subset. The new number of variations gives N .

Let us call this construction of possible (P, N)’s Grabiner’s erasing term rule. Grabiner
observes that it gives all the possible (P, N)’s for polynomials up to degree 4, and conjec-
tures that the same is true for higher degrees.

Here is a counterexample. Consider a polynomial of 5th degree with sign sequence
+,+,−,+,+,−. Here (P, N) = (3, 0) is possible, as shown by

(20 + 37x + 18x2)(1 − x)(2 − x)(3 − x)

= 120 + 2x − 179x2 + 4x3 + 71x4 − 18x5.

This combination is not obtained by Grabiner’s erasing term rule. Indeed, after changing
x in −x the sequence becomes +,−,−,−,+,+. As N = 0 we should erase terms and
obtain a sequence without variation. We should erase either the three −, or the three −
and the internal +. But erasing the corresponding signs in +,+,−,+,+,− gives in both
cases only one variation, while P = 3.

In contrast (P, N) = (3, 0) is impossible for the sequence +,+,−,+,−,−. Descartes’
rule predicts all the impossibilities for degree 5 polynomials without gaps, except this one
and its trivial analogues.

To prove this impossibility, let us specify the ordering of sign sequences by associating the
first sign to the constant term. We notice that the odd partO has sequence of signs +,+,−.
Its derivative of course has the same sequence and consequently a unique positive root r .
On ]0, r [, O is positive, and for x > r , O is decreasing. The even part E has sequence of
signs +,−,−, thus it decreases for x > 0. Our polynomial E + O decreases and has at
most 1 root on ]r,+∞[. As N = 0, E − O is positive on ]0,+∞[. On ]0, r [, O and thus
E + O are positive. There is one positive root on ]r,+∞[, thus P = 3 is impossible. �

Let us pass to degree 6 polynomials.

3The idea is that small terms can be neglected before applying Descartes’ rule. Estimates on how small these
terms should be are discussed in [13]. It is interesting to compare these estimates to the first lemma in [6].
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The exhaustive list of non-Descartes impossibilities is, up to trivial transformations:

+,+,−,+,−,+,+ is incompatible with (P, N) = (2, 0) or (4, 0),

+,+,+,+,−,+,+ is incompatible with (P, N) = (2, 0),

+,+,−,−,−,−,+ is incompatible with (P, N) = (0, 4).

The argument we gave in Grabiner’s example proves the first and second statements.

To prove the third statement, we write a polynomial with (P, N) = (0, 4) as

p = (c − bx + x2)(x + x1)(x + x2)(x + x3)(x + x4),

where xi > 0, i = 1, . . . , 4,
4c > b2 > 0. (2)

Expanding, p = a0 + a1x + · · · + a5x5 + x6, with in particular

a2 = cβ − bγ + δ < 0, (3)

a5 = −b + α < 0, (4)

the positive numbers α, β, γ, δ being defined as

α = x1 + x2 + x3 + x4,

β = x1x2 + x1x3 + x2x3 + x1x4 + x2x4 + x3x4,

γ = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4,

δ = x1x2x3x4.

(5)

By (2) and (4), √
c > b/2 > α/2 > 0, (6)

and, by (2) and (3),

2
√

c > b >
cβ + δ

γ
,

which gives

β
√

c
2 − 2γ

√
c + δ < 0. (7)

We expand the discriminant 4γ 2 − 4βδ of this expression using (5). All the terms are
positive. Now (7) implies in particular that

√
c <

γ + √
γ 2 − βδ

β
.

Combining with (6) gives βα/2 < β
√

c < γ + √
γ 2 − βδ or

αβ/2 − γ <

√
γ 2 − βδ. (8)

After expanding and canceling, we see that all the terms of αβ/2 − γ are positive. We
square both sides of (8). This gives us α2β − 4αγ + 4δ < 0. But the left-hand side, after
expanding and canceling, has only positive terms. This is a contradiction. �
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To check that our list of impossibilities is complete at degree 6, it is enough to consider
the possibilities established by Grabiner’s erasing term rule and the two following polyno-
mials, which after changing x into −x , x into 1/x or Y into −Y provide examples for all
the other possibilities:

(31 + 11x + x2)(1 − x)(2 − x)(3 − x)(4 − x)

= 744 − 1286x + 559x2 + 25x3 − 44x4 + x5 + x6,

(9 + 8x + 2x2)(1 − x)(2 − x)(3 − x)(4 − x)

= 216 − 258x − 37x2 + 90x3 − x4 − 12x5 + 2x6.

These possibilities and impossibilities do not seem to organize themselves in simple
classes.
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