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1 Introduction

A functional equation is an equation whose unknowns are functions. Cauchy’s functional
equation [17] ϕ(x + y) = ϕ(x) + ϕ(y), Schröder’s equation [28, 39] ϕ ◦ f = sϕ, and
Schilling’s equation [7, 25] 4qϕ(qx) = ϕ(x +1)+2ϕ(x)+ϕ(x −1) are examples of such
equations.

Functional equations arise in many branches of mathematics, for example, dynamical sys-
tems [1, 19, 24, 43], functional analysis [42], geometry [8, 9], information theory [3],
wavelet theory [20, 21], and special functions [27]. They also occur in other disciplines
such as physics [22, 33], engineering [15, 16], economics [4, 23] and so on.
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.

Funktionalgleichungen bilden nicht nur ein reichhaltiges Forschungsthema, sondern
sie sind auch beliebte Probleme bei Mathematikwettbewerben. Oft entspringen Funk-
tionalgleichungen konkreten Anwendungen. Sucht man etwa für ein diskretes dyma-
nisches System x �→ f (x) ein erstes Integral φ, so entspricht dies gerade dem Auffin-
den einer nicht konstanten Lösung der Funktionalgleichung ϕ ◦ f = ϕ. Die Autoren
untersuchen in ihrer Arbeit eine Klasse von Funktionalgleichungen, welche mit der
Babbage-Gleichung in Beziehung steht. Letztere fragt nach einer Funktion f , deren
n-te Iterierte f n die Identität ist. Insbesondere werden in der vorliegenden Arbeit ex-
plizite Lösungen für die Gleichung ϕ = ±ϕ ◦ f + g angegeben, wobei f eine Lösung
der Babbage-Gleichung, und g eine gegebene Funktion ist.
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The systematic study of functional equations did not begin until 1966 [2], although many
great mathematicians have been studying them before, including Euler (1768), Cauchy
(1821), Abel (1823), Darboux (1895), and Banach (1920) (cf. [27]). In the last five dec-
ades, the theory of functional equations has developed very rapidly and gradually became
an independent field of mathematics. Functional equations also became a common topic
in mathematics competitions, see the books [13, 30, 41], some problems and solutions in
the journals The American Mathematical Monthly and Mathematical Excalibur [18], and
the website “KöMaL” [34].

Apart from competition problems, a considerable number of interesting problems (see,
e.g., [10, 14, 24]) involve the following single variable functional equation – Babbage’s
equation

ϕn = id, (1)

where ϕn denotes the nth iterate of a self-map ϕ, and id stands for the identity. Ch. Babbage
[5, 6] studied its solutions in the reals. In 1916, J.F. Ritt [38] gave four types of real
solutions. Later, the results on Babbage’s equation were generalized into many different
directions, e.g., continuous solutions in [28, Theorem 15.2], meromorphic solutions in [28,
pp. 291–292], also [40, Example 2], homeomorphic solutions on the unit circle in [26], and
involutions on the plane in [31].

Motivated by the functional equation ϕ ◦ f = ϕ for an integrable map f (see [24]) and the
competition problem to determine the function ϕ : R\ {0, 1} → R such that

ϕ(x) + ϕ

(
x − 1

x

)
= 1 + x,

this paper investigates the single variable functional equations

ϕ = ±ϕ ◦ f + g, (2)

where f, g are given and f is globally periodic with the prime period n (i.e., f i �= id for
1 < i < n and f n = id).

The general form of these equations above is

F(ϕ ◦ f1, . . . , ϕ ◦ fn , id) = 0, (3)

where F, f1, . . . , fn are given and ϕ is unknown. When F is linear and the functions
f1, . . . , fn form a group under composition on their domain, S. Presić [29, 36, 37] char-
acterized all solutions of (3). The unique solution of a special case in (3) is determined
by M. Bessenyei [10] under additional regularity assumptions. Further investigations have
been carried out by M. Bessenyei and his collaborators [11, 12] for the unique differen-
tiable solution of (3).

The equation (2) is another special case of (3). With the methods of linear algebra com-
bined with a version of recurrent iteration, we present exact solutions of (2) and the for-
mulas of solutions are different from those in [32]. We also present some examples and
applications.
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2 The main results

The equation (2) is a class of linear functional equations and the corresponding homoge-
neous equation is

ϕ = ±ϕ ◦ f. (4)

Similar to [29, p. 101, Theorem 3.1.5], we have the superposition principle for the linear
functional equation (2).

Lemma 1. Let S be a set and (G,+) a group, f : S → S and g : S → G be two given
mappings. Then the general solution ϕ : S → G of equation (2) is given by ϕ = ϕ1 + ϕ2,
where ϕ1 : S → G is a particular solution of (2), and ϕ2 : S → G is the general solution
of equation (4).

Proof. Let ϕ : S → G be an arbitrary solution of (2) and ϕ1 : S → G a particular solution
of (2). Then

ϕ = ±ϕ ◦ f + g,

ϕ1 = ±ϕ1 ◦ f + g.

Thus (ϕ − ϕ1) = ±(ϕ − ϕ1) ◦ f . It follows that ϕ − ϕ1 is a solution of (4).

On the other hand, let ϕ2 : S → G be an arbitrary solution of (4) and ϕ1 : S → G a
particular solution of (2). Then

ϕ2 = ±ϕ2 ◦ f,

ϕ1 = ±ϕ1 ◦ f + g.

Thus (ϕ1 + ϕ2) = ±(ϕ1 + ϕ2) ◦ f + g. It follows that ϕ1 + ϕ2 is a solution of (2). �

In what follows, it suffices to find the general solution of the homogeneous equation (4)
and one particular solution of (2).

Lemma 2. Suppose f is globally periodic with the prime period n on a set S and the
unknown ϕ maps the set S to a set G. Then the general solution of ϕ = ϕ ◦ f is given by

ϕ(x) = H
(
x, f (x), f 2(x), . . . , f n−1(x)

)
,

where H : Sn → G is any function satisfying

H
(
x, f (x), . . . , f n−1(x)

)
= H

(
f (x), f 2(x), . . . , f n−1(x), x

)
.

Proof. Let ϕ : S → G be a solution of ϕ = ϕ ◦ f . Then define H : Sn → G in this way:
take an arbitrary x0 ∈ S,

H
(
x0, f (x0), . . . , f n−1(x0)

)
:= ϕ(x0), ∀x0 ∈ S;

on other points (x1, x2, . . . , xn) ∈ Sn , define H arbitrarily. We see that C f (x0) :=
{x0, f (x0), . . . , f n−1(x0)} is an orbit of x0. It follows from [28, Theorem 1.6] that ϕ is
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constant on C f (x0). So

H
(
x0, f (x0), . . . , f n−1(x0)

)
= ϕ(x0) = ϕ( f (x0)) = H

(
f (x0), . . . , f n−1(x0), x0

)
.

On the other hand, a simple calculation shows that ϕ := H satisfies ϕ = ϕ ◦ f . �

Let n be an integer greater than or equal to 2. A uniquely n-divisible Abelian group (K ,+)
is an Abelian group having the property that for each x ∈ K there is a unique y ∈ K such
that x = ny. So we can denote y by x

n .

Lemma 3. Suppose f is globally periodic with the prime period n on a set S, and (G,+)
is a uniquely n-divisible Abelian group. Then the general solution ϕ : S → G of ϕ = ϕ ◦ f
is given by

ϕ(x) =
n−1∑
i=0

h
(

f i (x)
)
, (5)

where h : S → G is an arbitrary function.

Proof. For an arbitrary function h : S → G, the function

ϕ(x) :=
n−1∑
i=0

h
(

f i (x)
)

evidently satisfies ϕ = ϕ◦ f . On the other hand, if ϕ is a solution of the equation ϕ = ϕ◦ f ,
then ϕ = ϕ ◦ f i for every positive integer i . Since (G,+) is a uniquely n-divisible Abelian
group, we have for any x ∈ S

ϕ(x) = ϕ(x)

n
+ ϕ( f (x))

n
+ · · · + ϕ( f n−1(x))

n

=
n−1∑
i=0

ϕ
(
f i (x)

)
n

.

Set h(x) := ϕ(x)
n . Then (5) holds. �

Lemma 4. Suppose f is globally periodic with the prime period n on a set S, n is odd,
and (G,+) is a group and for each y ∈ G, 2y = 0 if and only if y = 0. Then ϕ = −ϕ ◦ f
has a unique solution from S to G given by ϕ(x) = 0.

Proof. By successively substituting f j (x) for x in ϕ(x) = −ϕ ◦ f (x) for each j =
1, 2, . . . , n − 1, we obtain a set of n equations in the n unknowns ϕ( f j (x)):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(x) + ϕ( f (x)) = 0,

ϕ( f (x)) + ϕ( f 2(x)) = 0,

...

ϕ( f n−2(x)) + ϕ( f n−1(x)) = 0,

ϕ( f n−1(x)) + ϕ(x) = 0.

(6)
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Since n is odd, we have

ϕ(x) = −ϕ( f (x)) = ϕ( f 2(x)) = · · · = ϕ( f n−1(x)) = −ϕ(x).

Thus ϕ(x) = 0. �

With similar arguments as in Lemmas 2, 3, proofs of the following two lemmas are easily
supplied.

Lemma 5. Suppose f is globally periodic with the prime period n on a set S, n is even,
and (G,+) is a group. Then the general solution ϕ : S → G of ϕ = −ϕ ◦ f is given by

ϕ(x) = H
(
x, f (x), . . . , f n−1(x)

)
,

where H : Sn → G is any function satisfying

H
(
x, f (x), . . . , f n−1(x)

)
+ H

(
f (x), f 2(x), . . . , f n−1(x), x

)
= 0.

Lemma 6. Suppose f is globally periodic with the prime period n on a set S, n is even,
and (G,+) is a uniquely n-divisible Abelian group. Then the general solution ϕ : S → G
of ϕ = −ϕ ◦ f is given by

ϕ(x) =
n−1∑
i=0

(−1)ih
(

f i (x)
)
,

where h : S → G is an arbitrary function.

Now we shall give exact solutions of (2).

Theorem 1. Suppose f is globally periodic with the prime period n on a set S, and
(G,+) is a uniquely n-divisible Abelian group. Then there exists a solution ϕ : S → G of

ϕ = ϕ ◦ f + g if and only if
n−1∑
i=0

g ◦ f i = 0. Further, the general solution ϕ : S → G is

given by

ϕ(x) =
n−1∑
i=0

h
(

f i (x)
)

+
n−2∑
i=0

(n − 1 − i)

n
g( f i (x)), (7)

where h : S → G is an arbitrary function.

Proof. By the recurrent iteration to ϕ = ϕ ◦ f + g, we have
n−1∑
i=0

g ◦ f i = 0. On the other

hand, assume that
n−1∑
i=0

g ◦ f i = 0. Set

ϕ(x) :=
n−2∑
i=0

(n − 1 − i)

n
g( f i (x)) (8)
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which yields that

ϕ − ϕ ◦ f =
n−2∑
i=0

(n − 1 − i)

n
g ◦ f i −

n−2∑
i=0

(n − 1 − i)

n
g ◦ f i+1

=
n−1∑
i=0

(n − 1 − i)

n
g ◦ f i −

n−1∑
i=1

(n − i)

n
g ◦ f i

= (n − 1)

n
g −

n−1∑
i=1

1

n
g ◦ f i

= g.

So (8) is a particular solution of ϕ = ϕ ◦ f + g. By Lemmas 1, 3, (7) is the general
solution. �

Theorem 2. Suppose f is globally periodic with the prime period n on a set S, n is odd,
(G,+) is a a uniquely 2-divisible Abelian group. Then ϕ = −ϕ ◦ f + g has a unique
solution from S to G given by

ϕ(x) =
n−1∑
i=0

(−1)i g( f i (x))

2
. (9)

Proof. By induction, we have

ϕ( f j (x)) = (−1) jϕ( f j (x)) +
j−1∑
i=0

(−1)i g( f i (x)), j = 1, 2, . . . (10)

Since n is odd, set j = n, then (10) becomes

ϕ(x) = −ϕ(x) +
n−1∑
i=0

(−1)i g( f i (x)).

Thus (9) follows. One can check that (9) is a particular solution of ϕ = −ϕ ◦ f + g. By
Lemmas 1, 4, (9) is a unique solution. �

Theorem 3. Suppose f is globally periodic with the prime period n on a set S, n is even,
(G,+) is a uniquely n-divisible Abelian group. Then there exists a solution ϕ : S → G

of ϕ = −ϕ ◦ f + g if and only if
n−1∑
i=0

(−1)i g( f i (x)) = 0. Further, the general solution

ϕ : S → G is given by

ϕ(x) =
n−1∑
i=0

(−1)i h
(

f i (x)
)

+
n−2∑
i=0

(−1)i (n − 1 − i)g( f i (x))

n
, (11)

where h : S → G is an arbitrary function.
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Proof. Since n is even, set j = n, then (10) becomes

ϕ(x) = ϕ(x) +
n−1∑
i=0

(−1)i g( f i (x)),

which implies that
n−1∑
i=0

(−1)i g( f i (x)) = 0.

On the other hand, assume that
n−1∑
i=0

(−1)i g(ϕi(x)) = 0 holds. Set

ϕ(x) :=
n−2∑
i=0

(−1)i (n − 1 − i)g( f i (x))

n
. (12)

Then one can check that (12) is a particular solution of ϕ = −ϕ ◦ f + g. By Lemmas 1, 6,
(11) is the general solution. �

Remark that the conditions of Theorems 1 and 3 respectively, have a close connection with
the following two functional equations

n−1∑
i=0

ϕ ◦ f i = 0, n > 2, (13)

n−1∑
i=0

(−1)iϕ ◦ f i = 0, n > 2 is even, (14)

where f is a given globally periodic map with the prime period n. The general solutions
of these two equations are defined with the method of iterative construction in the paper
[32]. However, for some applications, it remains interesting to give exact solutions, which
are not of the form of a piecewise function.

3 Applications and examples
In this section, we conclude with some examples. The interested reader can find exact
solutions for more functional equations on the website [35] with a nice classification.

Example 4.1. Find the function ϕ : (0,+∞) → R satisfying ϕ(x) + ϕ(1/x) = 1.

Observe that 1/2 is a particular solution. By Theorem 3, the exact solution of this equa-
tion is

ϕ(x) = h(x) − h(1/x) + 1/2,

where h : (0,+∞) → R is an arbitrary function. With the method of iterative construction
in [28, Chp.1] or [32], the general solution with the form of piecewise function is given by

ϕ(x) =

⎧⎪⎨
⎪⎩

ϕ0(x), if x ∈ (0, 1)

1/2, if x = 1

1 − ϕ0 (1/x) , if x ∈ (1,∞)

where ϕ0 : (0, 1) → R is an arbitrary function.
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Example 4.2. Consider the Knuth mapping T : R2 → R
2 in this form [14]

T (x, y) = (−y + |x |, x),

which is globally periodic with the prime period 9.

By Theorem 1, all first integrals of T are of the form F(x, y) = ∑8
j=0 h(T j (x, y)), where

h : Rn → R is an arbitrary non-constant function. In particular, choosing h(x, y) = y, we
get a first integral

F(x, y) = y + |y − |x || + |x − |y − |x ||| + |y − |x − |y||| + |x − |y| + |y − |x − |y||||.

Example 4.3. Find the function ϕ : R \ {−1, 2} → R satisfying ϕ(x) − ϕ( f (x)) = g(x),
where f (x) = 2x−7

x+1 is globally periodic with the prime period 3.

One can examine

x
f−−−−→ 2x − 7

x + 1
f−−−−→ − x + 7

x − 2
f−−−−→ x .

By Theorem 1, there exists a solution of this equation if and only if

g(x) + g

(
2x − 7

x + 1

)
+ g

(
− x + 7

x − 2

)
= 0.

Further, the exact solution is given by

f (x) =
2g(x) + g

(
2x−7
x+1

)
3

+ h(x) + h

(
2x − 7

x + 1

)
+ h

(
− x + 7

x − 2

)
,

where h : R \ {−1, 2} → R is an arbitrary function.
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