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1 Introduction
Faà di Bruno’s formula for the derivatives of composite functions has an interesting history
and a rich literature (see, e.g., the survey by Johnson [8], the revealing paper on the prede-
cessors of Faà di Bruno by Craik [4] and the long list of references therein); some recent
papers are [13] and [11]. If f and g are functions with a sufficient number of derivatives,
then we have, for n ∈ N,(

d

dx

)n

f (g (x)) =
n∑

k=0

f (k) (g (x)) Pn,k (g; x)

with

Pn,k (g; x) = n!
∑ n∏

ν=1

1

aν !
(

g(ν) (x)

ν!
)aν

,

.

Die Formel von Leibniz für die höheren Ableitungen eines Produkts von zwei oder
mehr Funktionen ist wohlbekannt und handlich, da nur Binomial- respektive Multi-
nomialkoeffizienten auftreten. Ihr Gegenstück ist die Verallgemeinerung der Kettenre-
gel, nämlich der Formel für die höheren Ableitungen zusammengesetzter Funktionen.
Auch diese Formel, die nach Faà di Bruno benannt ist, gehört zum Standardrepertoire
der Analysis. Aufgrund ihrer kombinatorischen Komplexität hat sie trotz ihrer langen
Geschichte nichts von ihrem Reiz verloren und zieht immer wieder Mathematikerin-
nen und Mathematiker an. Neben der üblichen expliziten Form gibt es zahlreiche ge-
schlossene Darstellungen, die in speziellen Fällen unterschiedliche Vor- und Nachteile
aufweisen. Der nachstehende Aufsatz enthält eine in der bekannten Literatur bisher
nicht vertretene Darstellung und illustriert sie durch eine konkrete Anwendung.
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where the sum is over all different solutions in non-negative integers a1, . . . , an of a1 +
· · ·+an = k and a1 +2a2 +· · ·+nan = n. A different notation uses the Bell polynomials
(see, e.g., [5, p. 137] or [8, Equation (2.2)]). Spindler [13] published a short elementary
proof of Faà di Bruno’s formula. Mortini [11] found a representation of Pn,k (g; x) which
uses a simpler summation order so that the cumbersome condition a1+2a2+· · ·+nan = n
does not appear.
There are several closed representations of Pn,k . One of them is Meyer’s formula

Pn,k (g; x) = 1

k!
[(

d

dy

)n

(g (y) − g (x))k
]

|y=x
(1)

([10]; see also [8, Sect. 3, p. 224]) which is called Schlömilch’s formula in Jordan’s book
[9, pp. 31–32]. It can easily be derived by expansion of f in a power series f (y) =∑∞

k=0 fk · (y − g (x))k with fk = f (k) (g (x)) /k! and differentiating n times F = f ◦ g.
The slightly different form

Pn,k (g; x) =
(

n

k

) [(
d

dy

)n−k (
g (y) − g (x)

y − x

)k
]

|y=x

(2)

of Formula (1) follows by applying the Leibniz rule to(
d

dy

)n
[
(y − x)k

(
g (y) − g (x)

y − x

)k
]

and evaluating at y = x . Representation (2) was given as early as 1800 by Arbogast [3, p.
34] when notational changes are taken into account (cf. [4, p. 121]). It was rediscovered by
J.F.C. Tiburce Abadie ([1], [2]; see also [8, Sect. 3, p. 223]). Equation (2) can be rewritten
in the usual form

Pn,k (g; x) =
(

n

k

) [(
d

dh

)n−k

(�hg (x))k

]
|h=0

, (3)

where �h denotes the divided difference �hg (x) := (g (x + h) − g (x)) /h with step size
h. An equivalent result, which also predates [1], was given by J. West (see [4, p. 121]).
A further representation

Pn,k (g; x) = 1

k!
k∑

j=0

(
k

j

)
(−g (x))k− j

(
d

dx

)n

(g (x)) j (4)

known as Hoppe’s formula, is commonly attributed to Hoppe ([7]; see also [8, Sect. 3, p.
224]), but appears already in the work of West [14, vol. 1, Theorem 8, p. 138] (cf. [4, p.
127]).
Its direct consequence,

Pn,k (g; x) = 1

k!
[(

d

dx

)n

(g (x))k
]

|g(x)=0
, (5)

a streamlined version of Equation (4), is called Scott’s formula ([12]; see also [8, Sect. 3,
p. 226]).
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2 Main result and proof

The purpose of this short note is the derivation of a rather different closed representation
of Pn,k . The proof uses complex methods. Therefore, the main result is stated for analytic
functions defined on subsets of the complex plane.

Theorem 1. Let x be a complex number. Furthermore, let f and g be analytic functions on
(complex) neighborhoods of g (x) and x, respectively, with g′ (x) �= 0. Then the composite
function f ◦ g has the derivatives

(
d

dx

)n

f (g (x)) =
n∑

k=0

f (k) (g (x)) Pn,k (g; x) ,

where Pn,k possesses the representation

Pn,k (g; x) =
(

n

k

) (
d

dy

)n−k
[(

y − g (x)

g−1 (y) − x

)n+1 (
g−1

)′
(y)

]
|y=g(x)

. (6)

Remark 2. Note that the representation (6) is valid also for real functions f and g pos-
sessing a continuous derivative of order n in a (real) neighborhood of x ∈ R. This is a
consequence of the fact that each function f ∈ Cn (I ), where I is any real interval, can be
simultaneously approximated with arbitrary precision by an analytic function f̂ on each
compact set K ⊂ I , i.e., for each ε > 0, there exists f̂ analytic in a region containing K ,
such that ∣∣∣ f (k) (x) − f̂ (k) (x)

∣∣∣ < ε (x ∈ K , k = 0, . . . , n)

Remark 3. Note that the condition g′ (x) �= 0 assures that g is one-to-one on a certain
neighborhood of the point x .

Obviously, for fixed x , the function g̃x (y) := (y − g (x)) /
(
g−1 (y) − x

)
is analytic in a

deleted neighborhood of g (x). Because of
(
g−1

)′
(g (x)) = 1/g′ (x) the isolated singu-

larity at y = g (x) can be removed by defining g̃x (g (x)) := g′ (x). Setting Gn,x (y) :=
(g̃x (y))n+1 (

g−1
)′

(y), Formula (6) can be rewritten in the concise form

Pn,k (g; x) =
(

n

k

)
G(n−k)

n,x (g (x)) . (7)

Proof of Theorem 1. Let r > 0 such that f ◦ g is analytic with g′ (z) �= 0 in a region
containing the closed disk D̄r (x) = {z ∈ C | |z − x | ≤ r}. Applying the Cauchy integral
formula we obtain (

d

dx

)n

f (g (x)) = n!
2π i

∫
∂Dr (x)

f (g (z))

(z − x)n+1
dz.
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Because g′ (z) �= 0 on ∂Dr (x) we can change the variable z = g−1 (y), and the latter
contour integral is equal to∫

W

f (y)(
g−1 (y) − x

)n+1

(
g−1

)′
(y) dy

=
∫

W

f (y)

(y − g (x))n+1

(
y − g (x)

g−1 (y) − x

)n+1 (
g−1

)′
(y) dy,

where W = g (∂Dr (x)) is a closed integration path encircling g (x). As in Remark 3 we

note that y �= g (x), for all y ∈ W . Furthermore, h (y) :=
(

y−g(x)
g−1(y)−x

)n+1
is analytic in a

region containing g
(
D̄r (x)

)
� {g (x)}. The point y = g (x) is a removable singularity. If

we define h (g (x)) = (g (x))n+1 the function h becomes analytic at y = g (x). Therefore,
the Cauchy integral formula implies that(

d

dx

)n

f (g (x)) =
(

d

dy

)n
[

f (y)

(
y − g (x)

g−1 (y) − x

)n+1 (
g−1

)′
(y)

]
|y=g(x)

.

An application of the Leibniz rule for differentiation leads to(
d

dx

)n

f (g (x))

=
n∑

k=0

(
n

k

)
f (k) (g (x))

(
d

dy

)n−k
[(

y − g (x)

g−1 (y) − x

)n+1 (
g−1

)′
(y)

]
|y=g(x)

which proves Formula (6). �

3 An application
As an example showing the advantage of Formula (6) against other representations we
take g (x) = √

x , for x > 0.
In what follows we sometimes use the notation

zn = z (z − 1) · · · (z − n + 1) , zn = z (z + 1) · · · (z + n − 1) , n ∈ N,

z0 = z0 = 1,

for the falling and rising factorial, respectively.
The common form of Faà di Bruno’s formula yields(

d

dx

)n

f (g (x)) =
n∑

k=0

f (k) (√
x
)∑

aν

n!
∏

(aν !)−1
((

1/2

ν

)
x1/2−ν

)aν

,

where the summation runs over all non-negative integers aν satisfying
∑

aν = k and∑
νaν = n. After a simplification we arrive at

Pn,k (g; x) = (−1)n−k n!2−2n−k x (k−2n)/2
∑
aν

n!
∏

(aν !)−1
(

(2ν − 2)!
ν! (ν − 1)!

)aν

,

where
∑

aν = k and
∑

νaν = n.
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Meyer’s formula (1) requires nth order derivatives of
(√

y − √
x
)k with respect to y.

Abadie’s formula (2) requires derivatives of
(√

y−√
x

y−x

)k = (√
y + √

x
)−k with respect

to y.

Hoppe’s formula (4) leads to

Pn,k (g; x) = 1

k!
k∑

j=0

(−1)k− j
(

k

j

)
x (k− j )/2

(
d

dx

)n

x j/2

= xk/2−n

k!
k∑

j=0

(−1)k− j
(

k

j

) (
j

2

)n

,

while Scott’s formula (5) seemingly doesn’t provide any advantage.

Formula (6) with y−√
x

y2−x
= (

y + √
x
)−1 and g−1 (y) = y2 yields after an application of

the Leibniz rule(
n

k

)−1

Pn,k (g; x) =
(

d

dy

)n−k
[

2y(
y + √

x
)n+1

]
|y=√

x

=
[
2y

(
d

dy

)n−k 1(
y + √

x
)n+1

+
(

n − k

1

)
· 2

(
d

dy

)n−k−1 1(
y + √

x
)n+1

]
|y=√

x

= 2
√

x (−n − 1)n−k (
2
√

x
)−n−1−(n−k)

+ (n − k) · 2 (−n − 1)n−k−1 (
2
√

x
)−n−1−(n−k−1)

= (−1)n−k k (n + 1)n−k−1 (
2
√

x
)−2n+k

and finally

Pn,k (g; x) = (−1)n−k k

n

(
n

k

)
nn−k (

2
√

x
)−2n+k

, (8)

which is valid for 0 ≤ k ≤ n.

Remark 4. Comparison of the outcome of Hoppe’s formula with the rewritten form of
Equation (8)

Pn,k (g; x) = (−1)n−k n!
(k − 1)!

1

2n − k

(
2n − k

n

) (
2
√

x
)−2n+k

leads to the remarkable equation

k∑
j=0

(−1) j
(

k

j

)(
j/2

n

)
= (−1)n

22n−k

k

2n − k

(
2n − k

n

)
,

for 0 ≤ k ≤ n and n ∈ N. This is the Rosenstock–Gray–Riordan identity [6, p. 43,
Equation (3.164)].
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