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1 Introduction

The evaluation of finite sums involving binomial coefficients such as

i (Z) =2 (LD)

k=0

appears throughout the undergraduate curriculum. At the end of the previous century, the
evaluation of these sums was trivialized by the work of H. Wilf, D. Zeilberger and M.
Petkovsek [9]. The method of creative telescoping, described in the charming book [9],
provides an automatic tool for the verification of this type of identities.

Geschlossene Formeln fiir endliche Summen gehéren zum Werkzeugkasten der Ma-
thematik. Formeln fiir Partialsummen von geometrischen und arithmetischen Folgen
oder Summen im Pascalschen Dreieck lernt man bereits in der Schule kennen. Ent-
sprechende Nachschlagewerke oder CAS-Software bieten heutzutage erste Hilfe, wenn
in einer Berechnung eine Summe in geschlossener Form dargestellt werden soll. Die
Methoden, solche geschlossenen Formen zu finden, sind vielfiltig und stammen aus al-
len Bereichen der Mathematik. Die Autoren der vorliegenden Arbeit priasentieren eine
Methode aus der Wahrscheinlichkeitstheorie und zeigen einige iiberraschende Anwen-
dungen: Klassische Formeln erscheinen dabei in neuem Licht.
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On the other hand, it is often a good pedagogical idea to present a simple identity from
many different points of view. The reader will find in [1] this approach with the example

ok (2K (2m — K\~ ok (2K (2m + 1
() )-2 () e

k=0

The current paper presents probabilistic arguments for the evaluation of certain binomial
sums. The background required is minimal. The continuous random variables X consid-
ered here have a probability density function: this is a nonnegative function fx (x), such
that

X

fx(y)dy. (1.3)

In particular, fx must have total mass 1. Thus, all computations are reduced to the evalua-
tion of integrals. For instance, given a measurable function g : R — R such that the image
random variable g(X) is absolutely integrable, its expectation can be expressed as

Pr(X <x) =/

Eg(X) =/ e fx(y)dy. (1.4)

—00

In elementary courses, the reader has been exposed to normal random variables, written as
X ~ N(0, 1), with density

1 2
fx(x) = e /%, forx eR, (1.5)
V2r
and to exponential random variables, with probability density function
Je~ ™ forx > 0;
Ix(x;2) = » (1.6)
0 otherwise,

with 4 > 0.
The examples employed in the arguments presented here include random variables with
a gamma distribution of shape parameter ¢ > 0 and scale parameter § > 0, written as
X ~ T'(a, 0). These are defined by the density function

“_le_"/g, forx > 0;

1
x;a,0)= 0T @) 1.7
Fx( ) |0 otherwise. 17

Here I'(s) is the classical gamma function, defined by

I'(s) = /ooxf—le—x dx (1.8)
0

for Res > 0. The reader will find in [2] extensive information about this special function.
The exponential distribution is the special case of the gamma distribution with shape pa-
rameter a = 1. Recall that for a random variable X, the nth moment is defined by E(X").
Observe thatif X ~ I'(a, 8), then X = Y where Y ~ I'(a, 1). Moreover

EX" = 0"(a)n, (1.9)
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where
_T'(a+n)

(@), = Ta)

is the Pochhammer symbol. The main property of this family of Gamma random variables
is that it is closed under addition: assume X; ~ I'(a;, #) are independent, then

=a@+1)---(a+n-1) (1.10)

X1++mer(a1++am,9) (111)

This follows from the fact that the density probability function for the sum of two inde-
pendent random variables is the convolution of the individual ones.

Another distribution will be useful in the following, namely the beta distribution denoted
as Be(a, b) with density

a—1(1 _ b1 .
fx(x;a’b):[x (1—x)*"1/B(a,b)  for0<x <1; 2

0 otherwise.

Here B(a, b) is the beta function defined by
1
B(a, b) =/ x4 11 = x)’ax. (1.13)
0

Also the Pearson type II distribution [16] denoted as Pe(c) with density

1 _ +2ye—1 _ .
{m(l X )C for 1 <x < 1, (114)

0 otherwise.

The uniform distribution on [0, 1] appears as the special case a = b = 1 of the beta
distribution. A random variable Z, ;, with distribution Be(a, b) can be generated as

Xa

e — 1.15
Xa+ Xp ( )

Zap =

where X, and X} are independent gamma distributed with shape parameters a and b,
respectively; and a random variable Z, with Pe(c) distribution can be generated as 1 —
2Z.,, thatis,

2X, X, — X,

Z.=1-— = ,
Xc+X, X.+X,

(1.16)

where X, and X/, are independent gamma distributed with shape parameter c. A well-
known result is that Z,;, and X, + X} are independent in (1.15); similarly, X. + X_
and Z. are independent in (1.16). The reader will find information about these random
variables and detailed proofs of the statements employed here in Chapter 2 of [7].

The central idea of the paper is simple. Suppose a sequence of interest {ay} is identi-
fied as the moments of a random variable X, so that E(X*) = a. Suppose also that if
X1, X2,..., X, are independent random variables, identically distributed like X, then
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the moments of the sum ¥ = X+ X» + - - - + X, can also be computed, say ]E(Yk) = by.
Then the multinomial theorem and the linearity of the expected value operator give

bn:E(X1+"'+Xm)n

"2 (kl,kz,n...,km)E(Xllq)E(XIZQ)"'E(Xf;{")

R
n
- kﬁ-én,:n (kl’ ka, ..., km)aklak2 s
In terms of probability density functions, this could be rephrased as saying that if one
can compute the integral /R xF £(x) dx as well as the integral /R xK £ (x) dx of the mth

convolution f*™ of f with itself, then the multinomial theorem gives interesting identities.
This formulation hides the probability setting of the method.

2 A sum involving central binomial coefficients

Many finite sums may be evaluated via the generating function of terms appearing in them.
For instance, a sum of the form

) = D aia; 2.1

i+j=n

is recognized as the coefficient of x” in the expansion of & (x)?, where

oo
h(x) = ajx/ (2.2)
j=0
is the generating function of the sequence {a;}. Similarly,
Semy = > ay -, (2.3)
ki tkn=n

is given by the coefficient of x” in A (x)™. The classical example

1 o (2/\_;
L 2.4
V1 —4x jgo(j)x 4
gives the sums
> (21) (2" N 21) — 4 2.5)
i 1 n—i
and
2k 2km\ _ 22" T(% +n)
2 (kl)"'(km)‘ﬁ G 20

K-+ =n
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The powers of 1 — 4x are obtained from the binomial expansion

1—dx)™*=>" %(M)j, 2.7)

j=0
where (a); is the Pochhammer symbol.

The identity (2.5) is elementary and there are many proofs in the literature. A nice combi-
natorial proof of (2.5) appeared in 2006 in [6]. In a more recent contribution, G. Chang and
C. Xu [5] present a probabilistic proof of these identities. Their approach is elementary:
take m independent Gamma random variables X; ~ F(%, 1) and write

m n
_ n k ki
IE(Zl:Xl) - Z (k1, ...,km)EX11 - EX (2.8)
=

ki +kp=n

If X ~ T'(a, ), then the moments are given by (1.9). Thus, for each random variable X;,
the moments are given by

1
EXlk’ _ r(kl + Z) _ 2_2ki (2k1)' _ kl' (Zkl)’ (29)
r'(3) k;! 22ki \ k;

iterating the functional equation I'(a 4+ 1) = aI'(a) to obtain the second form. The expres-

sion
n n!
= (2.10)
kl,...,km kl'kz'km!

for the multinomial coefficients shows that the right-hand side of (2.8) is
! 2k 2k
2% > (kl)-.-(k’”). @2.11)
ki +othm=n N1 m

The evaluation of the left-hand side of (2.8) employs basic probabilistic results about the
pdf of the sum of independent, gamma distributed random variables. From (1.11), the sum
of m independent random variables I (%, l) has a distribution F(%, 1). Therefore, the

left-hand side of (2.8) is
I3 +n)

—_—. 2.12
I (2.12)

This gives (2.6). The special case m = 2 produces (2.5).

3 More sums involving central binomial coefficients

The next example deals with the identity

2 (4k\ (4n — 4k 2n
— 2411—1 2211—1 31
Z (2k) (2n - 2k) + n)’ S

k=0
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that appears as entry 4.2.5.74 in volume 1 of [10]. The proof presented here employs the
famous multisection technique, first introduced by Simpson [11] in the simplification of

1
5 (IE)(X1 1 X) +E(X — xz)Z”) , (3.2)

where X1, X7 are independent random variables distributed as I’ (%, 1).

The left-hand side is evaluated by expanding the binomials to obtain
l 2n _ 2n
3 E(X1 + X2)™ + E(X1 — X2)
2n 2n
1 20\ vk @y 2n—k L k(21 \ g vk oy 2n—k
= EZ(k)zaxl EX5"™ + 52(—1) P JEXTEXS"T
k=0 k=0
This gives

1 )
5 (BCG + X0 + B - X)) = QDM?M?%~
k=0

Using (2.9), this reduces to

1 o (@) (4K (4n — 4k
5(]E(X1+X2) +E(X1 - X)) = o ;(%)(2’1_2]{). (3.3)

The random variable X + X5 is I'(1, 1) distributed, so
E(X1 + X2)*" = 2n)!, (34)

and the random variable X| — X is distributed as (X1 4+ X2)Z1 2, where Zy ; is indepen-
dent of X| + X and has a Pearson type II distribution! Pe(1/2) with density fz,,(@) =

1/(z +/1 — z2). In particular, the even moments of Z;, are proportional to the central
binomial coefficients:

1 b 2dz 1 (2n 3s
T)avi—2 22\n) G-
Therefore,
2n)! (2n
E(X; — X2)*" = E(X| + X2)™" EZ%% = 27,1) a ) (3.6)
It follows that?
2n)! (2n
E(X; + X2)2” +EX; — X2)2” =Q2n)!+ (22”) (n ) (3.7

The evaluations (3.3) and (3.7) imply (3.1).

IThe Pearson type II distribution with parameter ¢ = % is also called the arcsine distribution
2This moment could be equally easily computed using the generating function (2.7)
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4 An extension related to Legendre polynomials

A key point in the evaluation given in the previous section is the elementary identity

2 ifkiseven;
1+ (-DF = ’ (4.1)

0 otherwise.

This reduces the number of terms in the sum (3.3) from 2n to n. A similar cancellation
occurs for any p € N. Indeed, let @ = ¢**/P be a complex pth root of unity. Then a
natural extension of (4.1) is given by

. 4.2)
0 otherwise.

piler_ ’p ifr =0 (mod p);

Observe that (4.2) reduces to (4.1) when p = 2.

The goal of this section is to discuss the extension of (3.1). The main result is given in the
next theorem. The Legendre polynomials appearing in the next theorem are defined by the
Rodrigues formula

n
2" p! dx"
The Legendre polynomials are examples of orthogonal polynomials and their properties
may be found in a variety of texts. The authors’ favorite ones include [2], [8], [13] and
[14] as well as Chapter 4 in the recent book [3].

Pu(x) = (2 =" (4.3)

In a classical subject, like the one treated in this paper, it is hard to state that a result is
new. The authors have not been able to find the next theorem in the literature.

Theorem 4.1. Let n, p be positive integers. Then

L (2kp\ (2(n —k)p) _ 2% =t iy
g (kp)( (n —k)p) B 2 (D" Py (COS (7)). (4.4)

p (=0

Proof. Replace the random variable X| — X» considered in the previous section, by X1 +
W X,, where W is a complex random variable with uniform distribution among the pth
roots of unity. That is,

1
, for0<¢<p-1 4.5)

Pr{W:w[}z—
p

The identity (4.2) gives

1 ifr=0 (mod p);

) (4.6)
0 otherwise.

Ewrzl

This is the cancellation alluded to above.
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Now proceed as in the previous section to obtain the moments

n
n _
S
k=0

_ (np)! = (2kp\ (2(n — k) p
2% kzz(:)(kp)((n—k)p)'

A second expression for E(X; + WX5)" employs an alternative form of the Legendre
polynomial P, (x) defined in (4.3). The next result appears in [12].

4.7)

Proposition 4.2. The Legendre polynomial is given by
1 n
Pa() = —E[(c+ V2 = DX+ (= Va2 = DX (4.8)
where X1 and X» are independent T’ (%, 1) random variables.

Proof. The proof is based on moment generating functions. Compute the sum

Eel‘(x-f—\/ Xz—l) X1 Eel‘(x—\/ Xz—l) X,

o
:Z—'E[(x—i—\/xz— D) X; + (x — Va2 — 1)X2] .
!
The moment generating function for a I" (%, l) random variable is
Ee'X = (1 —1)~1/2. (4.10)

This reduces (4.9) to
—-1/2 —1/2 112
(1 —t(x +/x2 - 1)) (1 = V2 — 1)) =1 —2x +13)7V
which is the generating function of the Legendre polynomials. See page 146 of [3]. U
Corollary 4.3. Let x be a variable and X1, X, as before. Then

E(X; + x2X2)" = nlx" P, (%(x + x_l)) . 4.11)

Proof. This result follows from Proposition 4.2 by the change of variables u = %(x +x7h
and the identity u®> — 1 = (3(x —x~1))2. O
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Equation (4.11) is a polynomial identity in the variable x. Hence we can replace x by the
random variable W'/2 and average over the values of W. This yields

-1
155 2 1/, _a
E(X| + WX))"? = (np)!—Ze’ P anp (— (elP +e IP)
p

=0 ? (4.12)
(np)! & l |
= - Z(—l)"anp (cos (—)) .
r 3 p
The proof of Theorem 4.1 is complete. t

5 Chu-Vandermonde and other classical identities

This section contains a selection of identities from the area of Special Functions that can
be derived by the method described in this paper. For example, the arguments presented

here to prove (2.5) can be generalized by replacing the random variables I (%, 1) by two

random variables I'(a;, 1) with shape parameters a; and ap, respectively. The resulting
identity is the Chu—Vandermonde theorem.

Theorem 5.1. Let a1 and a; be positive real numbers. Then

n

(ak (@)n—k _ (a1 +a)n
Z k' (n—k) nl

(5.1
k=0

This is a well-known result and the reader will find in [2] a more traditional proof. The
paper [15] describes how to find and prove this identity in automatic form.

Exactly the same argument as for (2.6) provides a multivariable generalization of the Chu—
Vandermonde identity.

Theorem 5.2. Let {a;}1<i<m be a collection of m positive real numbers. Then

z (@i, (@m,

1
ky! k! = E(al + -+ am)n. (5.2)

SR —

Proof. Consider m independent Gamma random variables X; ~ I (a;, 1). Then (1.9)
gives

v Ulai+k) _
EX; = T@ (@i, » (5.3)
and with X = X1 + -+ - + X,
!
E[x"]= > (@ - n), - (5.4)

ki!... ky!
kit ot =n L mn
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To obtain the result recall (1.11): the sum X = X +-- -+ X, is a Gamma random variable
with X ~ T (a; + - -+ + ay, 1). Therefore

E[X"] = (a1 + -+ am),. (5.5)
O

The final stated result presents a generalization of Theorem 4.1. This statement involves

the Gegenbauer polynomial C,Sa) (x) of degree n and parameter ¢ > 0, defined by the
Rodrigues formula [2, 6.4.14]

(2a)n
o),
n a+2 .

The reader will find in [2] and [3] information about these polynomials and in Section 18.3
of [8] a collection of formulas for them.

(—l)n(l _XZ)%—(I d"n (1 _x2)n+a—%. (5.6)

C}Sa) (x ) = dx

The authors have been unable to find the next result and the note following it in the litera-
ture.

Theorem 5.3. Letn, p € N,a € Rt and v = ¢'™/P. Then

n

@ip (@Du—tp 2 1 tnnpGa) (Ly, €, —1_ —¢
Z 7P = — Z(—l) ?PC9 (Lzo' 4+ 27107 ). (5.7)
S wp) (i -bp)- T p e (s )

Proof. Start with the moment representation for the Gegenbauer polynomials

CO(x) = %E (U(x V2 D)+ V(= Va2 - 1))" (5.8)

with U and V independent I'(a, 1) random variables. This representation is proved in
the same way as the proof for the Legendre polynomial, replacing the exponent —% by
the exponent —a. Note that the Legendre polynomials are Gegenbauer polynomials with
parameter a = % This result can also be found in Theorem 3 of [12]. O

Note 5.4. The value z = 1 in (5.7) gives

- @iy @by _ lp_l ~1 [nC(a)( (n_g)) 59
= (kp)! (n=K)p)! — p g( )7 Cp | 05 o)) (5.9)

This is a generalization of Chu—Vandermonde.

The techniques presented here may be extended to a variety of situations. Two examples
illustrate the type of identities that may be proven. They involve the Hermite polynomials
defined by

Ho(x) = (—1)"e" (i) e (5.10)
dx

The textbook [3] provides extensive information about this classical family of orthogonal
polynomials.

The next theorem appears as entry 4.5.2.9 in volume 2 of [10].
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Theorem 5.5. Let m € N. The Hermite polynomials satisfy

iH X1+ -+ xm _m—n/2 z Hkl(xl) Hkm(x””) (5 11)
n! " Jm N k! k! :
ki+-+kn=n

Proof. Let N be a normal random variable with mean 0 and variance % The proof starts
with the moment representation for the Hermite polynomials

H,(x) =2"E(x +iN)", (5.12)
that appears as Exercise 6.8 on page 167 of [13]. The details are left to the reader. U

The moment representation for the Gegenbauer polynomials (5.8) and the same proba-
bilistic technique as before yield the final result presented here. The reader will find the
following statement as entry 5.18.2.7 in [4].

Theorem 5.6. Let m € N. The Gegenbauer polynomials C,Sa) (x) satisfy

Cr(la1+...+am)(x) — Z C]Eill)(x) . C,E’anm)(x) (5.13)
ki+-+km=n

Remark 5.7. A relation between Gegenbauer and Hermite polynomials is given by

1 X 1
; (a) _
algrgo e C, («/E) = n!Hn(x). (5.14)

This relation allows us to recover easily identity (5.11) from identity (5.13).

The examples presented here show that many of the classical identities for special func-
tions may be established by probabilistic methods. The reader is encouraged to try these
methods in his/her favorite identity. For example, he/she may want to prove the Pfaff—
Kummer transformation formula

2F1(a,b;c;2) = (1—2)7“2F (a,c—b; c; ) (5.15)

z—1
where .
o0
a), (b
2Fi(a,b; ¢; 2) =2Mzk (5.16)
= Ok
is the hypergeometric function, by remarking that
2F1 (@, b ¢;2) :=E (exp (:XaZpc—p)) =E (1 —2Zp ) (5.17)

where X, ~ I (a, 1) and Zp —, ~ B (b, ¢ — b) and by using the symmetry 1 — Z . ~
Zc—p,p. The reader will find in [2] a proof of (5.15).
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manuscript.
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