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1 Introduction

Let E be an ellipse in the plane with center at the origin and let E ′ be a homothetic copy
of E with center of homothety at the origin and ratio of homothety bigger than 1. It is not
difficult to see the veracity of the following facts.

(1) The midpoints of every set of parallel chords of E are collinear. They are indeed over
the conjugate diameter to the direction of the chords.

(2) The midpoint of every chord of E ′ which is tangent to E , belongs to E , and the chord
cuts off from conv(E ′) a set with constant area.

(3) The area of conv(p∪E) is constant for every p ∈ E ′ and the segment joining the two
contact points, between the tangents to E from p with E , is parallel to the tangent
line to E ′ at p.

We wonder if there is another convex body, besides ellipses, which has at least one of the
properties explained in (1), (2) or (3). By a theorem proved by W. Blaschke [1] and related

.

Die Mittelpunkte paralleler Sehnen einer Ellipse liegen bekanntlich auf einer Geraden
(nämlich auf dem zur Richtung der Sehnen konjugierten Durchmesser). Nach einem
Satz von Karl Hermann Brunn charakterisiert diese Eigenschaft die Ellipsen in der
Klasse der beschränkten konvexen Kurven. Eine Ellipse E hat noch zahlreiche weitere
schöne Eigenschaften, etwa diese: Die Menge der Punkte P ausserhalb von E mit der
Eigenschaft, dass der Flächeninhalt der konvexen Hülle von {P} ∪ E konstant ist, ist
eine zu E ähnliche Ellipse. Charakterisiert auch diese Eigenschaft die Ellipsen? Lesen
Sie weiter!
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by him to Brunn, we know the answer for the property (1): if K is a planar convex body
such that the midpoints of every set of parallel chords are aligned then it is an ellipse.

With respect to properties (2) and (3) there are some results, but we first need to introduce
the definition of two important convex bodies. Given a convex body K , i.e., a compact
convex set in Rn with non-empty interior, the floating and illumination bodies of K are
two classes of very important convex bodies associated to K . They are defined as follows:
for a given positive number δ < voln(K ), the floating body denoted as Kδ is defined as
the intersection of all the closed half-spaces which cut off from K a cap with volume δ.
For instance, if K is a Euclidean disc with unit area in the plane and δ < 1/2, then Kδ is
a disc concentric with K . Notice that the midpoint of every chord of K which is tangent
to Kδ belongs to Kδ. This property holds for every convex body and its floating body Kδ

(see for instance [4]).

For a positive number δ, the illumination body K δ of K is defined as the set

K δ = {x ∈ R
n : voln(conv(x ∪ K )) − voln(K ) ≤ δ}.
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Figure 1 The floating and illumination bodies

For instance, if K is a square of unit area and δ =
√

2
4 , it is easy to see that its illumination

body K δ is an octagon of side length 1, as shown in Figure 2. Notice that for every line �
supporting K δ at a point x , there is a chord of K joining two contact points with the tangent
lines from x , which is parallel to �. This property holds for every convex body K and its
illumination body K δ as will be shown in Lemma 1 in the next section. In some sense this
property is the counterpart for illumination bodies of the property that the midpoint of any
chord of K tangent to Kδ is in Kδ.
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Figure 2 The illumination body of a square
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One interesting and important problem in Convex Geometry related to the floating body is
the homothety conjecture raised by C. Schütt and E. Werner in [5]: Does a convex body K
have to be an ellipsoid, if K is homothetic to Kδ for some δ > 0?

In [5] indeed, they proved that if there is a sequence δk −→ 0 such that Kδk is homothetic
to K for all k ∈ N (with respect to the same center of homothety), then K is an ellipsoid.
Later, A. Stancu [7] gave a proof of the conjecture under the consideration that the bound-
ary of K is of class C≥4. Finally, in [10], E. Werner and D. Ye proved the conjecture. With
respect to the illumination body, A. Stancu proved in [8] the following: Let K ⊂ Rn+1 be a
convex body of class C2+. There exists a positive number δ(K ) such that K δ is homothetic
to K with respect to the same center of homothety, for some δ < δ(K ) if and only if K is
an ellipsoid. However, it seems that Stancu’s theorem does not deal with the planar case.

Here we are interested in the illumination body problem for the planar case, that is, we
will prove the following.

Theorem 1. Let K ⊂ R2 be a strictly convex body with boundary of class C1 such that for
all δ > 0 the illumination body K δ is homothetic to K with respect to a point x ∈ int K .
Then K is an ellipse.

2 A characterization of the ellipse
Let � and γ be two closed convex curves in the plane with γ ⊂ int(conv�). We will
say that a pair of curves with this condition is a nested pair of curves. For every point
x ∈ � let a, b ∈ γ be the first two contact points of the left and right tangents through x ,
respectively, with γ . Denote the area of the region enclosed between the segments [a, x],
[b, x], and the arc âb by A(x) (see Figure 3).
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Figure 3 The region A(x)

Using this notation we have that A(x) is constant if and only if � is the boundary of
an illumination body of convγ . As a first result we prove the following lemma which is
necessary for the proof of Theorem 1.

Lemma 1. Let � and γ be a nested pair of curves. Suppose conv� is an illumination
body of convγ and let x be any point in �. Then, for every chord [a, b] ⊂ convγ joining
two contact points with the tangents to γ from x, the line � parallel to [a, b] through x is
a support line of �.
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Figure 4 The line supporting � at x is parallel to [a, b]

Proof. Let x be any point in � and let a and b be two contact points of γ with the tangent
lines from x , as shown in Figure 4. Suppose � is a line through x which is parallel to the

chord [a, b]. Since γ is contained in the region bounded by the rays −→xa and
−→
xb we have

that � does not intersect γ . Let y ∈ � be a point different from x and let c and d be the
points where the two supporting lines of γ intersect the line ab. By the convexity of γ
we have that [a, b] ⊂ [c, d]. Assume that y is to the left of x , then c is contained in the
segment [y, z] with z the first contact point of the tangent line from y (it could be that z
coincides with c). It follows that

|xab| = |yab| ≤ |ycb| ≤ |conv(y ∪ γ )|.
The case when y is to the right of x is analogous, therefore, we have that � is a supporting
line of �. �

This lemma directly implies the following.

Corollary 1. If K ⊂ R
2 is strictly convex then ∂K δ is of class C1.

Given a convex body K in the plane, we say that a chord [a, b] is an affine diameter if
there is a pair of parallel lines supporting K at a and b, respectively. For completeness we
will prove the following known lemmas (see for instance [2], and [3]).

Lemma 2. Let K ⊂ R
2 be a strictly convex body with boundary of class C1, and let x be

a point in int K such that every chord of K through x is an affine diameter. Then K has
center of symmetry at x.

Proof. WLOG we may suppose that x coincides with the origin 0. Suppose the boundary
of K is parameterized in polar coordinates by (θ, r(θ)), with θ ∈ [0, 2π]. Let �(θ) and
�(θ + π) be the corresponding supporting lines, as shown in Figure 5, and denote by β(θ)
the directed angle between the radius vector and the tangent line at the point (θ, r(θ)), for
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Figure 5 K has center of symmetry at 0

every θ ∈ [0, 2π]. By the known formula (see for instance [9])

tan(β(θ)) = r(θ)

r ′(θ)

and since β(θ) = β(θ + π) we have that

r(θ)

r ′(θ)
= r(θ + π)

r ′(θ + π)
,

which implies that

d

dθ

(
r(θ)

r(θ + π)

)
= r ′(θ) · r(θ + π) − r(θ) · r ′(θ + π)

[r(θ + π)]2 = 0.

Hence, r(θ) = λ · r(θ + π), for some number λ and for every θ ∈ [0, 2π]. Now, by the
Intermediate Value Theorem, it is easy to see that λ must be equal to 1. Therefore, K has
center of symmetry at 0. �

Lemma 3. Let K ⊂ R2 be a strictly convex body with boundary of class C1, and let � be
a line intersecting int K with the following property: for any point p ∈ {� \ K }, the line
joining the two contact points ap, bp, of the tangents drawn from p with K , is parallel to
a fixed vector υ ∈ S1 and intersects � in a point x p, such that ap, xp, bp are in that order.
Then the ratio |apxp|

|bpxp|
is constant for all p ∈ {� \ K }.
Proof. First we apply an affine transformation T in the plane in such a way that � is
orthogonal to [ap, bp] for every p ∈ {� \ K }. WLOG we may assume that �′ = T (�)
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coincides with the x-axis. Set a′
p = T (ap), b′

p = T (bp), and K ′ = T (K ), and let γ1 be
the part of bd K ′ contained in the upper half-plane, and let γ2 be the part of bd K ′ in the
lower half-plane. Let 0 and d be the two points where �′ intersects bd K ′. We may suppose
that γ1 and γ2 coincide with the two differentiable functions f, g : [0, d] −→ R in the
interval [0, d]. Since tangentiality and concurrency are preserved under the application of
an affine transformation we have that the lines tangent to K ′ at the points a′

p = (x0, f (x0))
and b′

p = (x0, g(x0)) concur at the point T (p) on �′. By a simple calculation we have

f ′(x0)

f (x0)
= g′(x0)

g(x0)
.

It follows that f ′(x0) · g(x0) − g′(x0) · f (x0) = 0, and since g(x0) �= 0 we have that

f ′(x0) · g(x0) − g′(x0) · f (x0)

[g(x0)]2 = 0.

Hence
d

dx

(
f (x0)

g(x0)

)
= 0.

Now, since x0 is an arbitrary point in the interval (0, d) we have that there is a real number

k such that f (x)
g(x) = k, for every x ∈ (0, d). Therefore,

|a′
px ′

p|
|b′

px ′
p| = |k| and so |apx p|

|bpx p| = |k|. �
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Figure 6 The ratio
|ap xp |
|bp xp | is constant

As an interesting application of Lemma 1 we prove the characterization of the ellipse
mentioned in the introduction.

Theorem 1. Let K ⊂ R
2 be a strictly convex body with boundary of class C1 such that for

all δ > 0 the illumination body K δ is homothetic to K with respect to a point x ∈ int K .
Then K is an ellipse.

Proof. WLOG we may assume that x coincides with the origin 0.

Claim 1. K is centrally symmetric with center of symmetry at 0.
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Proof. Let υ ∈ S1 be a given direction and [a, b] a chord of K parallel to υ. Suppose the
supporting lines of K at a and b intersect at a point p (see Figure 7). For some δ ∈ R+ we
have p ∈ ∂K δ . By Lemma 1 we have that the supporting line of K δ through p is parallel

to [a, b]. Let q be the point of intersection between ∂K and the ray
−→
0p. Since K and K δ

are homothetic with center of homothety at 0 we have that the support line of K through
q is also parallel to [a, b]. Let [c, d] be the chord of K with maximum length in direction
υ. It is known that there exists a pair of parallel supporting lines of K through c and d
(see for instance [6]). Let ω ∈ S

1 be the unit vector parallel to these supporting lines and
denote by ∞(ω) the point at infinity in direction ω.

K�

O
K δ

υ

�
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� b

�

�

�
p�

�

�
q

Figure 7

Consider a sequence of chords {�n} parallel to [a, b], such that the limit of the sequence is
the chord [c, d] and such that they are contained in the same half-plane delimited by [c, d].
For a given n ∈ N let pn be the intersection point of the supporting lines of K through the
extreme points of �n . We have that 0, q , and pn are aligned. On the other hand, we have

that pn → ∞(ω) when n → ∞. It follows that the ray
−→
0q is parallel to ω. Now, let t be

the point where the other supporting line of K parallel to υ intersects ∂K . Analogously,

we prove that
−→
0t is parallel to ω and 0, q , and t are collinear. Since through q and t there

exist parallel supporting lines, we have that [q, t] is an affine diameter of K through 0. The
direction υ was chosen arbitrarily and since K is strictly convex, then it is easy to see that
all the affine diameters of K meet at 0. By Lemma 2 we have that K is centrally symmetric
with center of symmetry at 0. �

Claim 2. The midpoints of every set of parallel chords are collinear.

Proof. Consider an arbitrary direction υ ∈ S1. Let �1 and �2 be the two supporting lines
of K with direction υ and let {s} = �1 ∩ ∂K and {t} = �2 ∩ ∂K . Given any chord parallel
to υ, the supporting lines through its extreme points intersect on the line st . By Lemma
3 we have that any chord parallel to υ is divided by the segment [s, t] in a constant ratio.
The segment [s, t] contains 0 in its interior, so the chord of K through 0 and parallel to υ
is divided by 0 in the ratio 1 : 1. We have shown that the midpoints of the chords parallel
to υ are aligned. �
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Finally, we apply the theorem of Blaschke mentioned in the introduction and the proof is
complete. �
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