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1 Introduction

In 1955 H. Furstenberg introduced a simple topology on the set of rational integers to prove
the infiniteness of the set of primes [1, 6, 11]. In this topology, a subset A ofZ is open if and
only if each of its points is contained in A together with an infinite arithmetic progression.
We present the precise definition in Section 2. This topological space gives very good, non-
trivial, though elementary examples and counterexamples for many topological concepts,
see for example the book of Steen and Seebach [13, pp. 80–81].

In this paper we study some of its interesting topological properties and its metrizations.
Among others, in Section 3 we give a proof for its non-compactness which does not use a
metrization, and we characterize convergent sequences.

From Urysohn’s metrizability theorem it can be easily deduced that the Furstenberg topol-
ogy is metrizable (see, e.g., [7]). Urysohn’s theorem, however, does not provide an explicit

.

Im IX. Buch von Euklids Elementen findet sich der heute wohlbekannte zahlentheore-
tische Beweis, dass die Folge der Primzahlen nicht abbricht. Im Jahre 1955 gab Hillel
Fürstenberg einen überraschenden topologischen Beweis für eben diesen Satz. Zahlen-
theorie und Topologie scheinen auf den ersten Blick völlig unabhängige Gebiete der
Mathematik zu sein. Doch gibt Fürstenbergs Topologie auf der Menge der ganzen Zah-
len einen engen Zusammenhang zwischen diesen zwei fernen Gebieten. Aus diesem
Grund ist sie für viele Mathematikerinnen und Mathematiker so attraktiv. In der vorlie-
genden Arbeit werden verschiedene interessante Aspekte dieser Topologie betrachtet.
Insbesondere wird auch eine metrische Vervollständigung vorgestellt.



104 Some observations on the Furstenberg topological space

method of finding a metric which induces a given topology. Therefore, in Section 4 we
present three different translation invariant metrics on Z inducing the Furstenberg topol-
ogy. The first of these were originally proposed by the present authors in [10], the second
one by J. Ferry on an Internet forum [5], and the third one appears here for the first time.
In this we make use of the so-called factorial number system, to which we also give a brief
introduction.

In Section 4 we also construct the metrical completion of this third metrization. The com-
pletion of a certain metrization of a topological space is not a natural construction in gen-
eral, since the completions of homeomorphic metric spaces are not necessarily homeo-
morphic to each other. Our completion is still natural in a certain sense, since, as we shall
see, if two different translation invariant metrics on Z generate the Furstenberg topology,
then their completions are automatically uniformly equivalent.

2 The Furstenberg topology

Throughout this paper, we shall denote the set of natural numbers (positive integers) by N

and the set of integers by Z.

Let us define the Furstenberg topology T on Z as follows. If a, b ∈ Z, a �= 0, then we call
the set

aZ + b = {ak + b : k ∈ Z}
an (infinite) arithmetic progression. Let T be the topology generated by all sets of this
form. Thus, a general open set is a (possibly empty) union of arithmetic progressions. The
topological space (Z,T ) is called the Furstenberg space.

We collect some useful basic facts about the space (Z,T ) for further reference.

• A point p is an inner point in a set A ⊂ Z if A contains an arithmetic progression
containing the point p. In other words, p ∈ A is an inner point if there are some
a, b ∈ Z, a �= 0 such that p ∈ aZ + b ⊂ A.

• We saw above that a set is open if and only if it is a union of arithmetic progressions.
This immediately yields that a set consisting only of positive (or negative) elements
cannot be open. Similarly, a finite nonempty set cannot be open.

• A set of the form aZ + b is closed as well. This follows from the fact that its com-
plement is the union of the arithmetic progressions

aZ + b + 1, . . . , aZ + b + a − 1

(provided that a > 0).

3 Some additional topological facts in (Z,T )

Now we go a bit deeper into the topological structure of the Furstenberg space and we
consider some of its less trivial properties.
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3.1 Closedness

We saw above that a finite nonempty set cannot be open. Now the question arises whether
every finite set is closed or not. The answer is yes. Even singletons are closed.

Theorem 1. The singletons {c} are closed sets.

Proof. We saw above that the arithmetic progressions are closed sets. We show that

{c} =
∞⋂

a=1

(aZ + c).

Suppose that the right-hand side contains an element c + d or c − d with d > 0. This
element is not contained in 2dZ + c, which is a contradiction. Thus {c} is an intersection
of closed sets, thus it is itself closed. �

Remark 1. Later we shall see that (Z,T ) is metrizable, so it is Hausdorff, from which it
also follows that singletons are closed.

In the tiny literature of (Z,T ) we can find some results on the closure of special sets. We
cite a few of these results.

• The set of squarefree integers (excluding ±1) is closed [2, p. 720].

• The set of Mersenne numbers (of the form 2p − 1, where p is a prime) is closed [2,
p. 720].

• The set of Fermat numbers 22n + 1 (n ≥ 0) is closed [2, p. 720].

• The closure of the set P of primes is P ∪ {−1, 1} [2, p. 718].

• The closure of the set of Fibonacci numbers Fn is {Fn : n ≥ 0} ∪ {(−1)n+1Fn : n ≥
0}. See [8] for the original proof and [3] for a nice generalization.

3.2 Cofinite sets and denseness

A set in Z is called cofinite if its complement is finite. We can easily see that cofinite sets
different from Z cannot be closed. (If they were closed, their complements would be open,
which is impossible.) Then the question arises: what is the closure of a cofinite set?

To answer this question we use the simple topological fact

cl(A) = (int(Ac))c, (1)

where cl denotes closure, int denotes interior and c complement.

Theorem 2. The closure of a cofinite set is Z. In other words, cofinite sets are dense in Z.

Proof. Let A be a cofinite set in Z. Then Z \ A is finite, so it does not contain an inner
point: int(Z \ A) = ∅. Then equality (1) yields that cl(A) = Z. �
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Are there ‘smaller’ sets which are dense? We know by Theorem 1 that finite sets cannot
be dense. Hence we have to look for infinite sets. A surprising but easy fact is that the
nonnegative integers form a dense subset.

Example 1. The set N0 = {0, 1, 2, 3, . . .} is dense in (Z,T ). Indeed, using again (1) we
find

cl(N0) = Z \ int(Z \ N0).

The set Z \ N0 of negative integers does not contain any inner points, since it does not
contain any arithmetic progressions. Hence

cl(N0) = Z \ int(Z \ N0) = Z \ ∅ = Z.

Example 2. Now we generalize the previous example. If we omit finitely many elements
from the set

{k, k + 1, k + 2, . . .} or {. . . ,−k − 2,−k − 1,−k},
the remaining set will be still dense.

One can ask whether every dense set has the form as in the previous example. The answer
is no: there are dense sets of different form, as the next example shows.

Example 3. The set N := {±n2 : n ∈ N} does not contain an inner point, since there is no
arithmetic progression which contains only square numbers, so Z \ N is dense.

3.3 Compactness

A topological space X is said to be compact if any family (Pi )i∈I of open sets which cover
X , which means that

X =
⋃
i∈I

Pi ,

has a finite subfamily which also covers X . An important equivalent condition is the fol-
lowing. A family (Pi )i∈I of sets satisfies the finite intersection property (fip) if the inter-
section of any finite subfamily (Pi1 , . . . , Pik ) is nonempty. The space X is compact if and
only if for any family (Pi )i∈I of closed sets satisfying fip, the intersection of (Pi )i∈I itself
is not empty: ⋂

i∈I

Pi �= ∅.

See [12] for the proof. This simple result enables us to prove the non-compactness of
(Z,T ).

Theorem 3. The Furstenberg space (Z,T ) is not compact.

Proof. We construct a family of closed sets which satisfies fip, but the intersection of all
the family is empty. Let

Pi = piZ + i,
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where pi is the i th prime number, so

P1 = 2Z + 1, P2 = 3Z + 2, P3 = 5Z + 3, . . . .

Let us choose an arbitrary finite family of these closed sets:

Pi1 , Pi2 , . . . , Pik .

The intersection of these is not empty if and only if there is an n such that

n = pi1 j1 + i1,

n = pi2 j2 + i2,

...

n = pik jk + ik .

Such an integer n surely exists by the Chinese Remainder Theorem. Hence (Pi )i∈N satis-
fies fip. However, ⋂

i∈N
Pi = ∅,

since in the opposite case there would exist an integer n such that

n = pk jk + k (k ∈ N).

Such an n cannot be nonnegative, since pk > k, so the least nonnegative n satisfying
the equality must be equal to k. To see that n cannot be negative either, observe first that
pk > 2k if k ≥ 5. If n is negative, then each jk is negative, thus

n = pk jk + k ≤ −pk + k < −2k + k = −k

for each k ≥ 5, which is also impossible. �

Remark 2. The non-compactness of (Z,T ) was proved in [7], too. However, that proof
uses several properties of the Legendre symbols, and it is more complicated than the one
presented here.

Later we shall see that (Z,T ) is a metrizable space which can be metrized in such a way
that it is not complete. From this it also follows that it cannot be compact.

3.4 Convergent sequences in (Z,T )

Now we turn to the question of convergence,which is a very interesting one in the Fursten-
berg space.

A sequence (an)n∈N converges to a point a in a topological space (X,T ) if for any neigh-
bourhood of a (a set containing an open set which contains a) there is an n0 such that this
neighbourhood contains all of an if n > n0.
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First we study the sequences converging to 0 in (Z,T ). The open neighbourhoods of 0
are the sets kZ (k ∈ N) and unions of these. If k tends to infinity, then kZ has less and
less elements. This shows that typical sequences converging to 0 in Furstenberg’s sense
tend to infinity in the ordinary sense. Does every sequence of this type converge to 0? The
answer is no. If a sequence tending to infinity has infinitely many odd members, then it has
infinitely many members which are not contained in the neighbourhood 2Z of 0, thus it
does not converge to 0. This heuristic consideration shows that the members of a sequence
converging to 0 have more and more divisors as the index grows. The following theorem
describes this in a precise way.

Theorem 4. Let (an)n∈N be a sequence of integers. Then limn→∞ an = 0 if and only if,
for every natural number m there is an index n0 such that an is divisible by m whenever
n > n0.

Since our topology is translation invariant, this theorem provides a characterization for all
convergent sequences: the sequence (an)n∈N converges to c if and only if an − c converges
to 0.

Note that it is not sufficient to suppose that the condition holds for each prime number in
the previous theorem. For example, the sequence an = p1 p2 · · · pn satisfies the condition
for each prime number, however, none of its members is divisible by 4, therefore it does
not converge to zero.

Example 4. The members of the sequence an = n! are divisible by m if n ≥ m. Hence we
have the rather surprising fact that

lim
n→∞ n! = 0.

Moreover, n! + 7 → 7 as n → ∞.

Example 5. The members of the sequence

an = lcm(1, 2, . . . , n)

are divisible by m if n ≥ m (here lcm denotes the least common multiple). So

lim
n→∞ lcm(1, 2, . . . , n) = 0.

Example 6. An example for a positive sequence converging to a negative number: let

an = 1 · 1! + 2 · 2! + · · · + n · n!.
Then it follows by induction that an = (n + 1)! − 1, so

lim
n→∞ an = −1.

Before studying the metrizability of the Furstenberg space, we mention that connected-
ness questions in this space were treated in detail by P. Szczuka [14]. A simple fact that
the reader can easily check is that (Z,T ) is totally disconnected, i.e., its only connected
subsets are the empty set and the singletons (see also [10]).
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4 Some metrics inducing the Furstenberg topology

Using the above characterization of sequences converging to zero, we can easily find a
metric which induces the Furstenberg topology. By definition, a metric induces a topology
if all open balls with respect to the metric form a basis for the topology. Or, equivalently, a
sequence converges to a point a in the topology if and only if the distance of the members
of the sequence from the point a tends to zero.

We say that a function ‖ ‖: Z → R is a norm on Z if it satisfies

(1) ‖n‖ ≥ 0, and ‖n‖ = 0 if and only if n = 0,

(2) ‖n‖ = ‖ − n‖,

(3) ‖n + m‖ ≤ ‖n‖ + ‖m‖
for all n,m ∈ Z. We shall only consider translation invariant metrics on Z, which means
that there is a norm ‖ ‖: Z → R such that d(n,m) = ‖n − m‖ for each n,m ∈ Z.
Conversely, if ‖ ‖ is an arbitrary norm, then d(n,m) := ‖n − m‖ defines a translation
invariant metric on Z, and we also say that the topology on Z induced by d is the topology
induced by the norm.

One such norm can be the following:

‖n‖L := 1

max{m ∈ N : 1, 2, . . . ,m | n} if n �= 0, and ‖0‖L := 0.

Thus, for example,

‖24‖L = 1

4
,

since 1, 2, 3, 4 divide 24, but 5 not any more. One can easily see that ‖n‖L → 0 if and
only if n → 0 in the Furstenberg topology. Now the metric d : Z×Z → R can be defined
as

d(n,m) := ‖n − m‖L .

It can be easily shown that this metric induces the Furstenberg topology, see also the
paper [10].

The above norm is not the only one which induces the Furstenberg topology. A norm on Z

induces the Furstenberg topology if and only if it has the following property: a sequence
converges to 0 with respect to the topology if and only if the norm of its general term tends
to 0.

Hence, one can define a different norm as follows. For a fixed integer n, let Dn denote the
set of all positive divisors of n, and let

‖n‖F :=
∑

k∈N\Dn

2−k = 1 −
∑
k∈Dn

2−k .

This norm was introduced by J. Ferry in 2009 on an Internet forum [5]. Ferry gave only a
heuristic proof that the function d(n,m) := ‖n − m‖F is really a metric.
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The paper [7] deals with the properties of these two metrics. Among others, the authors
show that these two metrics are metrics indeed, and they do induce the Furstenberg topol-
ogy. Several additional interesting properties are also deduced in [7].

Now we introduce a new metric, numerically different from the above two, and based on
the so-called factorial number system. For this metric we can easily construct the metric
closure of (Z,T ).

4.1 The factorial number system

In this system a number is represented in factorial base instead of base 10. The i th radix is
i !, where the highest digit allowed is i . Hence every natural number n can be represented as

n = i1 · 1! + i2 · 2! + i3 · 3! + · · · + ik · k! (0 ≤ i j ≤ j),

and this representation is unique (there is no other sequence i1, . . . , ik which results the
same n). For instance,

349 = 1 · 1! + 0 · 2! + 2 · 3! + 4 · 4! + 2 · 5!.
See more on the factorial number system (FNS) in [9].

With the help of the factorial number system it is easy to give a necessary and sufficient
condition for a sequence of positive integers to converge to 0 in the Furstenberg topology,
which is the analogue of Theorem 4.

Theorem 5. Let (an)n∈N be a sequence of positive integers with FNS representation

an = i1,n · 1! + · · · + ikn ,n · kn! (n ∈ N).

Then (an)n∈N converges to 0 in the Furstenberg topology if and only if for any positive
integer m there is an index n0 such that im,n = 0 holds for all n > n0.

Proof. Suppose that an converges to 0. If m ∈ N, then, by Theorem 4, there is an index n0
such that (m +1)! | an for all n > n0. If the digits i1,n, . . . , im,n are not all zero for such an
n, then an lies between two adjacent multiples of (m+1)!, which contradicts (m+1)! | an .
Thus i1,n = · · · = im,n = 0.

Conversely, suppose that the condition of the theorem is satisfied and m ∈ N. Applying
the condition separately to each j = 1, . . . ,m − 1 rather than to m alone, we obtain that
there is an index n j such that i j,n = 0 for all n > n j . Now let n0 := max{n1, . . . , nm−1}.
If n > n0, then i1,n = · · · = im−1,n = 0, thus m! | an , which implies that an is divisible
by 1, . . . ,m, and an tends to 0. �

4.2 A new metric based on FNS

If the FNS representation of n ∈ N is

n = i1 · 1! + · · · + ik · k!,
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then we define

‖n‖ := 1

min{ j ∈ N : i j �= 0} .

If n is a negative integer, then ‖n‖ := ‖ − n‖, and ‖0‖ := 0. Now the new metric
d : Z × Z → R will be

d(n,m) := ‖n − m‖. (2)

By the symmetry of the Furstenberg topology with respect to 0, a sequence (an)n∈N of
integers converges to 0 if and only if (|an|)n∈N converges to 0. Moreover, if (an)n∈N con-
verges to 0, and we change some of its terms to 0, this does not affect its convergence.
Thus, from Theorem 5 it follows that (an)n∈N converges to 0 if and only if ‖an‖ → 0,
and hence, by the remarks in the beginning of Section 4, we see that the new metric d also
generates the Furstenberg topology on Z.

4.3 Uniformly equivalent metrics

If (X, d) is a metric space, then there exists a complete metric space
(
X , d

)
which contains

X as a dense subspace. This complete metric space is uniquely determined up to an isom-
etry, and it is called the completion of (X, d). In the next subsection we shall construct
the completion of the metric space (Z, d). Thus the following question arises naturally: if
a topology on a set is induced by two (or more) different metrics, is there any connection
between the completion of these metric spaces? In general, the answer is no. For example,
the interval ]0, 1[ is homeomorphic to R as a topological space. Their completions are
[0, 1] and R, which are, of course, not homeomorphic.

However, the completion that we shall describe is still a natural construction in a certain
sense. The point is this. If d1 and d2 are two translation invariant metrics on Z which
induce the same topology, e.g., the Furstenberg topology, then they are automatically uni-
formly equivalent, i.e., the identity mapping between (Z, d1) and (Z, d2) is uniformly
continuous in both directions.

To see this, let ‖ ‖1 and ‖ ‖2 be the two norms inducing d1 and d2, respectively. If ε > 0,
then, since d1 and d2 are homeomorphic to each other, there is a number δ > 0 such
that ‖n‖1 < δ implies ‖n‖2 < ε. Thus d1(m, n) = ‖m − n‖1 < δ implies d2(m, n) =
‖m −n‖2 < ε, which shows that the identity mapping from (Z, d1) to (Z, d2) is uniformly
continuous. Interchanging the role of d1 and d2, we obtain the assertion.

So if two translation invariant metrics induce the Furstenberg topology, then they are uni-
formly equivalent. The next theorem shows that the completion of Z endowed with such a
metric is uniquely determined up to uniform equivalence.

Theorem 6. If (X, dX ) and (Y, dY ) are uniformly equivalent metric spaces, then their
completions are uniformly equivalent as well.

Proof. For simplicity, we shall denote the two metrics dX and dY by the same symbol d ,
since this cannot cause any ambiguity. Let f : X → Y be a uniform equivalence, i.e., a
bijective mapping between X and Y such that both f and f −1 are uniformly continuous,
and let

(
X , d

)
and

(
Y , d

)
be the completion of X and Y , respectively.
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We extend f to a mapping f̃ : X → Y in the following way. If p ∈ X , then choose a
sequence (pn)n∈N in X converging to p. Since f is uniformly continuous, ( f (pn))n∈N
is a Cauchy sequence, and by the completeness of Y , it is convergent in Y . Let f̃ (p) :=
limn→∞ f (pn). It can be easily seen that f̃ (p) does not depend on the choice of the
sequence (pn)n∈N, and that f̃ is an extension of f .

Now we show that f̃ is uniformly continuous. Let ε > 0 be arbitrary. By the uniform con-
tinuity of f , there exists δ > 0 such that p, q ∈ X , d(p, q) < 3δ implies d( f (p), f (q)) <
ε/3. Now let p, q ∈ X with d(p, q) < δ, and let (pn)n∈N and (qn)n∈N be two sequences
in X converging to p and q , respectively. Since they are Cauchy sequences as well, there
is an index n0 ∈ N such that d(pn, pm) < δ and d(qn, qm) < δ whenever n,m ≥ n0, thus
also d( f (pn), f (pm)) < ε/3 and d( f (qn), f (qm)) < ε/3. From these, taking the limit
m → ∞ we obtain

d(pn, p) ≤ δ, d(qn, q) ≤ δ, d
(
f (pn), f̃ (p)

) ≤ ε

3
, d

(
f (qn), f̃ (q)

) ≤ ε

3
.

Hence we have

d(pn, qn) ≤ d(pn, p) + d(p, q) + d(q, qn) < δ + δ + δ = 3δ.

By the choice of δ this implies d( f (pn), f (qn)) < ε/3, and finally,

d
(
f̃ (p), f̃ (q)

) ≤ d
(
f̃ (p), f (pn)

) + d( f (pn), f (qn)) + d
(
f (qn), f̃ (q)

)
< 3 · ε

3
= ε,

which means that f̃ is uniformly continuous.

In the same way we extend f −1 : Y → X to a uniformly continuous mapping f̃ −1 : Y →
X . If p ∈ X , and (pn)n∈N is a sequence in X converging to p, then ( f (pn))n∈N converges
to f̃ (p), and, by the construction of f̃ −1,

p = lim
n→∞ pn = lim

n→∞ f −1( f (pn)) = f̃ −1
(
f̃ (p)

)
.

Interchanging the role of f̃ and f̃ −1, we see that they are inverses to each other, thus f̃ is
indeed a uniform equivalence between X and Y . �

4.4 The completion of (Z, d)

We now turn to the completeness question of the metric space (Z, d), where the metric d
is defined by (2). It can be easily seen that this metric space is not complete, i.e., not every
Cauchy sequence is convergent in the set Z. For instance, let

an = 1 · 1! + 1 · 2! + · · · + 1 · n!.
Then m! | (an − am) if n ≥ m, hence d(an, am) ≤ 1

m , and (an)n∈N is a Cauchy sequence.
However, if a positive number was the limit of (an)n∈N, then all of its FNS digits would
be 1, which is obviously impossible. Clearly, (an)n∈N does not converge to 0, and, from
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the generalization of the factorial number system to negative numbers below, we shall see
that it does not converge to a negative number either.

This simple consideration shows that we have to add additional ‘numbers’ to the set Z to
make the above Cauchy sequence – and others – convergent. To this end, we generalize
the factorial number system to negative integers. First we need a recursion that gives the
FNS digits of a positive integer in an explicit manner.

Lemma 1. Suppose that z is a positive integer, and consider the following recursion. Let
i1 be the remainder of z divided by 2. If i1, . . . , in−1 are already defined, then let in be the
remainder of

z − i1 · 1! − · · · − in−1(n − 1)!
n!

divided by n + 1. Then there is a greatest index m such that im �= 0, and the FNS repre-
sentation of z is

z = i1 · 1! + · · · + im · m!.

Proof. We start from the FNS representation of z, and we show that each digit in satisfies
the given recursion. For n = 1 this is obvious. If n ≥ 2, then

z − i1 · 1! − · · · − in−1(n − 1)!
n! = in · n! + · · · + im · m!

n!
= in + in+1

(n + 1)!
n! + · · · + im

m!
n! .

On the right-hand side, each term is divisible by n + 1, except, possibly, for the first one,
thus the remainder in the nth step of the recursion is indeed in , the nth FNS digit of z.
Finally, if m is the index of the greatest nonzero digit of z, then the recursion obviously
gives in = 0 for n > m. �

Now if z is a negative integer, then we modify this recursion in such a way that in every
step we take the least nonnegative remainder. Thus, we let i1 be the least nonnegative
remainder of z divided by 2, and if i1, . . . , in−1 are already defined, then let in be the least
nonnegative remainder of

z − i1 · 1! − · · · − in−1(n − 1)!
n!

divided by n + 1. For example, if we apply this procedure to the number −349, then we
obtain the sequence

1, 2, 1, 0, 3, 6, 7, 8, 9, 10, . . . .

In this case we see that there is no greatest index m such that im �= 0. On the other hand, it
can be easily seen that z − i1 · 1! − · · · − in−1(n − 1)! is the greatest among the multiples
of n! which are not greater than z, just as in the case of z positive. Thus, if n is such that
n! ≥ |z|, then

z − i1 · 1! − · · · − in−1(n − 1)!
n! = −n!

n! = −1,
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whose greatest nonnegative remainder divided by n + 1 is in = n. In conclusion, whereas
for z nonnegative we have in = 0 if n is large enough, for a negative z we have in = n if n
is large enough, as in the example above.

Thus every integer has a unique representation in terms of the factorial number system,
and, as we have just seen, z ≥ 0 if and only if there is an index m such that in = 0 for all
n > m, and z < 0 if and only if there is an index m such that in = n for all n > m.

Using the notation
Zn := {0, 1, . . . , n − 1},

we define

Z :=
∞∏

n=2

Zn .

If we identify each integer with its FNS representation, then we may write Z ⊂ Z. Now
we extend the norm and metric on Z to Z. If z = (i1, i2, i3, . . . ) ∈ Z, where in ∈ Zn+1 for
each n, and at least one in is different from zero, then let

‖z‖ := 1

min{ j ∈ N : i j �= 0} ,

and if z = (0, 0, 0, . . . ), then ‖z‖ := 0. To introduce the metric on Z, we have to define a
subtraction on Z in such a way that it is consistent with subtraction in the FNS.

Lemma 2. Let z1 = (i1, i2, i3, . . . ) and z2 = ( j1, j2, j3, . . . ) be two integers, and define
the sequences (kn)n∈N and (ln)n∈N by the following recursion:

k1 :=
{

0 if i1 = j1,
1 if i1 �= j1,

l1 :=
{

1 if i1 = 0, j1 = 1,
0 otherwise,

kn :=
{

in − jn − ln−1 if in − jn − ln−1 ≥ 0,
in − jn − ln−1 + n + 1 if in − jn − ln−1 < 0,

ln :=
{

0 if in − jn − ln−1 ≥ 0,
1 if in − jn − ln−1 < 0.

Then we have z1 − z2 = (k1, k2, k3, . . . ).

Proof. We shall show by induction that the nth FNS digit of z1 − z2 is kn for each n ∈ N.
By the construction of the FNS digits described above, we have to show that k1 is the least
nonnegative remainder of z1 − z2 divided by 2, and kn is the least nonnegative remainder
of (z1 − z2 − k1 · 1! − · · · − kn−1 · (n − 1)!)/n! divided by n + 1, for each n ≥ 2. The first
assertion is obvious. Now suppose that n ≥ 2, and k1, . . . , kn−1 are the first n − 1 digits
of z1 − z2. First observe that the inequalities 0 ≤ in ≤ n, 0 ≤ jn ≤ n and 0 ≤ ln−1 ≤ 1
imply

−n − 1 ≤ in − jn − ln−1 ≤ n,

from which it follows that 0 ≤ kn ≤ n in either cases in the definition of kn . Thus it
remains to show that

n + 1 | z1 − z2 − k1 · 1! − · · · − kn−1 · (n − 1)!
n! − kn,
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which is equivalent to

(n + 1)! | z1 − z2 − k1 · 1! − · · · − kn · n!. (3)

By the definition of in and jn , we have

(n + 1)! | z1 − i1 · 1! − · · · − in · n!,
(n + 1)! | z2 − j1 · 1! − · · · − jn · n!,

thus (3) is equivalent to

(n + 1)! | (k1 − i1 + j1)1! + · · · + (kn − in + jn)n!. (4)

Now it can be shown by a simple induction that

n∑
m=1

(km − im + jm)m! =
{

0 if ln = 0,
(n + 1)! if ln = 1.

From this, relations (4) and (3) follow at once, which verifies the assertion of the lemma.
�

If z1 = (i1, i2, i3, . . . ) and z2 = ( j1, j2, j3, . . . ) are two points in Z, then define the
sequences (kn)n∈N and (ln)n∈N by the same recursion as in Lemma 2, and finally let z1 −
z2 := (k1, k2, k3, . . . ). (It can be seen from the proof of the lemma that the sequence
(ln)n∈N consists of merely ‘auxiliary’ digits, which do not appear in the final result of the
subtraction.) Now let

d : Z × Z → R, d(z1, z2) := ‖z1 − z2‖.
Thus Z becomes a metric space, and Z is its metric subspace.

Theorem 7. The metric space
(
Z, d

)
is the completion of (Z, d).

Proof. We have to show that
(
Z, d

)
is a complete metric space and that Z is dense in

Z. Let (an)n∈N be a Cauchy sequence in Z. Thus, for every k ∈ N there is an index n0
such that ‖an − am‖ < 1

k if n,m > n0, therefore the first k components of an − am are
zero. As it can be seen from the algorithm of subtraction, this also implies that the first k
components of an and am are identical. Thus we may define ik to be the kth component
of an with an arbitrary n > n0. Now it is obvious from the construction that the sequence

(an)n∈N converges to a := (i1, i2, i3, . . . ). Thus
(
Z, d

)
is a complete metric space.

Finally, let a = (i1, i2, i3, . . . ) be an arbitrary point in Z and ε > 0. Choose a k ∈ N such
that 1

k < ε and let b := (i1, . . . , ik, 0, . . . ). Then b ∈ Z and d(a, b) = ‖a −b‖ < ε, which
shows that Z is dense in Z. �
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Rezső L. Lovas1

Institute of Mathematics
University of Debrecen
Debrecen, Hungary
e-mail: lovas@science.unideb.hu

István Mező2
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1Rezső L. Lovas was supported by the OTKA project K-111651 (Hungary).
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