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Thanks to Wolstenholme [14], the following three congruences have been known since
1862, for all primes p ≥ 5: (

2p − 1

p − 1

)
≡ 1 (mod p3), (1)

1 + 1

2
+ 1

3
+ · · · + 1

p − 1
≡ 0 (mod p2), (2)

1 + 1

22
+ 1

32
+ · · · + 1

(p − 1)2
≡ 0 (mod p). (3)

Here of course, 1
k means the (multiplicative) inverse of k in the relevant sense: in Zp , Zp2 ,

etc, according to the context.

.

Die Partialsummen sn = 1 + 1
2 + 1

3 + · · · + 1
n der harmonischen Reihe wurden im

Laufe der Zeit immer wieder untersucht. Wohlbekannt ist beispielsweise, dass sn für
kein n > 1 ganzzahlig ist. Für Primzahlen p ≥ 5 fand Joseph Wolstenholme 1862, dass
der Zähler von sp−1 durch p2 teilbar ist. Verschiedene äquivalente Formulierungen und
Folgerungen dieses Satzes sind bekannt. Falls nun sp−1 sogar durch p3 teilbar ist, nennt
man p eine Wolstenholme-Primzahl. Bislang wurden nur zwei derartige Primzahlen
gefunden, aber man kennt von ihnen verschiedene äquivalente Charakterisierungen.
Eine davon hat erstaunlicherweise mit den Bernoulli-Zahlen zu tun. Die Autoren des
vorliegenden Artikels untersuchen diese seltenen Pflanzen im Primzahlgarten.



126 C. Aebi and G. Cairns

More than 125 years later, Gardiner [2] showed the relation between these equivalences
when the degree is pushed one level higher:

Theorem 1. If p ≥ 7 is prime, the following conditions are equivalent:

a) p is a Wolstenholme prime, meaning :
(2p−1

p−1

) ≡ 1 (mod p4),

b) 1 + 1
2 + 1

3 + · · · + 1
p−1 ≡ 0 (mod p3),

c) 1 + 1
22 + 1

32 + · · · + 1
(p−1)2

≡ 0 (mod p2),

d) p | Bp−3 where Bk denotes the kth Bernoulli number.

In 1988 the only known Wolstenholme prime was 16843. It had been identified while
searching for irregular primes, which as Kummer had revealed are intimately connected
to Fermat’s last theorem [7]. In the same manner, the next Wolstenholme prime, 2124679,
was discovered five years later by Buhler, Crandall, Ernvall and Metsänkylä [1]. The term
Wolstenholme prime was introduced by McIntosh in his 1995 paper [12]. Ever since, no
other Wolstenholme prime has been identified; see [10] for another equivalent condition.
Nevertheless, Gardiner’s result has been extended one degree further.

Theorem 2. If p ≥ 7 is prime, the following conditions are equivalent:

a)
(2p−1

p−1

) ≡ 1 (mod p5),

b) 1 + 1
2 + 1

3 + · · · + 1
p−1 ≡ 0 (mod p4),

c) 1 + 1
22 + 1

32 + · · · + 1
(p−1)2

≡ 0 (mod p3),

d) p2 | Bp3−p2−2.

The above result is implicitly contained in Helou’s and Terjanian’s 2008 paper [5], but
somewhat scattered amongst a raft of other, often more substantial results. We will say
more on this at the end of this note. Our main goal here is to highlight the result itself, and
to provide an elementary and direct proof. In so doing we hope this may also serve as an
introduction to the more recent articles by experts in the field [12, 5, 9, 11, 13]. One basic
classical result we use throughout this note is a particular case of Leudesdorf’s theorem
[8]; see also [4, Chap. VIII.8.7] and [3]. We provide a proof, for completeness.

Lemma. If p ≥ 5 is prime and k ∈ N then

∑
1≤i≤p−1

1

i k
≡

∑
1≤i≤ p−1

2

1

i k
≡ 0 (mod p), if k is even and p − 1 � | k, (4)

∑
1≤i≤p−1

1

i k
≡ 0 (mod p2), if k is odd and p − 1 � | k + 1. (5)

Proof. Consider a generator a ∈ Z
∗
p . Then

∑
1≤i≤p−1

1

i k
≡

∑
1≤i≤p−1

1

(ai)k
≡ 1

ak

∑
1≤i≤p−1

1

i k
≡ 0 (mod p)
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since 1/ak �≡ 1 (mod p). When k is even, 1/ i k ≡ 1/(p−i)k (mod p) and so (4) follows.

When k is odd, notice that in Zp2 we have:

∑
1≤i≤p−1

1

i k
=

∑
1≤i≤(p−1)/2

1

i k
+ 1

(p − i)k
≡

∑
1≤i≤(p−1)/2

1

i k
+ 1

kpi k−1 − i k

≡ kp
∑

1≤i≤(p−1)/2

1

kpi k − i k+1

≡ −kp
∑

1≤i≤(p−1)/2

1

i k+1
≡ 0 (mod p2),

where the penultimate equivalence is obtained by amplification by the conjugate, kpi k +
i k+1, and the last equivalence is by using (4). �

With that in hand we are set to provide the following:

Proof of Theorem 2. (a) ⇔ (c). We first develop the binomial coefficient
(2p−1

p−1

)
“down-

wards”: (
2p − 1

p − 1

)
= (2p − 1)(2p − 2) · · · (2p − (p − 1))

1 · 2 · · · (p − 1)

= (−1)p−1
(

1 − 2p

1

) (
1 − 2p

2

)
· · ·

(
1 − 2p

p − 1

)
.

Expanding the last line in Zp5 gives us:

1 − 2p
∑

i

1

i
+ 4p2

∑
i< j

1

i j
− 8p3

∑
i< j<k

1

i jk
+ 16p4

∑
i< j<k<l

1

i jkl
, (6)

where here and below, unless otherwise stated, the summations are over variables in the
range 1, . . . , p − 1.

Next we work “upwards”:(
2p − 1

p − 1

)
= (1 + p)(2 + p) · · · ((p − 1) + p)

1 · 2 · · · (p − 1)

=
(
1 + p

1

) (
1 + p

2

)
· · ·

(
1 + p

p − 1

)

to obtain in Zp5 :

1 + p
∑

i

1

i
+ p2

∑
i< j

1

i j
+ p3

∑
i< j<k

1

i jk
+ p4

∑
i< j<k<l

1

i jkl
. (7)
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Multiply equation (7) by 2 and add the product to equation (6) in order to eliminate the p
term. Then divide both members by 3 to get:

(
2p − 1

p − 1

)
≡ 1 + 2p2

∑
i< j

1

i j
− 2p3

∑
i< j<k

1

i jk
+ 6p4

∑
i< j<k<l

1

i jkl
. (8)

Concerning the last summand, notice that multiplying all the indices i, j, k, l by 2 leaves
the sum

∑
i< j<k<l

1
i j kl fixed in Zp . Therefore, since 24 �≡ 1 (mod p), this sum is equiva-

lent to 0 (mod p).

The second summand may be transformed by using 2
∑ 1

i j =
(∑ 1

i

)2 − ∑ 1
i2

. After

substitution and application of (2) to the square term we get:

(
2p − 1

p − 1

)
≡ 1 − p2

∑
i

1

i2
− 2p3

∑
i< j<k

1

i jk
(mod p5). (9)

Finally, concerning the last summand, notice that we have:

6
∑

i< j<k

1

i jk
=

(∑
i

1

i

)3

− 3

(∑
i

1

i2

) ⎛
⎝∑

j

1

j

⎞
⎠ + 2

∑
i

1

i3
, (10)

which is equivalent to 0 (mod p2) by using the equivalences (2), (3) and (5). Therefore
we have proved (

2p − 1

p − 1

)
≡ 1 − p2

∑
i

1

i2
(mod p5), (11)

which figures in [12, p. 385].

(b) ⇔ (c). By using elementary identities we obtain:

2
∑

i

1

i
=

∑
i

(
1

p − i
+ 1

i

)
= p

∑
i

(
1

(p − i)i
+ 1

i2
− 1

i2

)

= −p
∑

i

1

i2
+ p2

∑
i

1

(p − i)i2

= −p
∑

i

1

i2
+ p2

∑
i

(
1

(p − i)i2
+ 1

i3

)
− p2

∑
i

1

i3

= −p
∑

i

1

i2
− p2

∑
i

1

i3
+ p3

∑
i

1

(p − i)i3
,

from which we easily conclude by using (5) on the middle summand and (4) on the last
summand as

∑
i

1
(p−i)i3

≡ ∑
i

−1
i4

(mod p).
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Equation (11) ⇔ (d). This last equivalence requires basic knowledge of Bernoulli numbers
we recall from [6]. If

Sm(p) :=
p−1∑
i=1

im, (12)

then from [6, p. 230, Theorem 1],

Sm(p) =
m+1∑
i=1

1

i

(
m

i − 1

)
pi Bm+1−i . (13)

Importantly for us, the Bi are 0 for odd integers i > 1. Our general method is to transform
the summand in (11) into an equation of the form (12) by applying Euler’s theorem,

i−2 ≡ iφ(p3)−2 (mod p3),

where φ is Euler’s totient function. Working in Zp3 and letting m := p3 − p2 − 2 we get

p−1∑
i=1

i−2 ≡
p−1∑
i=1

im = Sm(p) =
m+1∑
i=1

1

i

(
m

i − 1

)
pi Bm+1−i . (14)

Since odd indexed Bernoulli numbers greater than one vanish, we apply a consequence of
the von Staudt–Clausen theorem [6, p. 233, Theorem 3], which says that for n even

denom(Bn) =
∏

p−1|n
p prime

p.

In particular, the denominator of Bn is square free; so it is at most divisible by p, and never
by p2. Furthermore, the denominators of Bp−3 and Bp−5 are not divisible by p, and since
p − 1 is not a divisor of p3 − p2 − 2 or p3 − p2 − 4, so p does not divide Bp3−p2−2 or
Bp3−p2−2. As a consequence, all terms of the sum (14) vanish, except the first one, giving

pBp3−p2−2 (mod p3), which replaced in (11) leads us to what is wanted:

(
2p − 1

p − 1

)
≡ 1 − p3Bp3−p2−2 (mod p5). �

An amusing aspect of the preceding theorem is that McIntosh commented that there is
probably only a finite number of primes verifying criterion (a) of Theorem 2 and conjec-
tured that there are none [12, bottom p. 387]. One natural question is: Can Theorem 2 be
extended to the next degree? According to [5] it seems the answer is no, at least not just
involving the divisibility of a single Bernoulli number. Indeed, Helou and Terjanian obtain
the following results (see [5, Lemma 3 and Cor. 5(1)]):(

2p − 1

p − 1

)
≡ 1 − p3Bp3−p2−2 + 1

3
p5Bp−3 − 6

5
p5Bp−5 (mod p6),
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p−1∑
i=1

1

i
≡ − p2

2
Bp3−p2−2 + p4

6
Bp−3 − p4

5
Bp−5 (mod p5),

p−1∑
i=1

1

i2
≡ pBp3−p2−2 − p3

3
Bp−3 + 4

5
p3Bp−5 (mod p4),

and so the last term in Bp−5 does not coincide in any pair of expressions. Notice that
reducing these three equivalences modulo p5, p4, p3 respectively establishes Theorem 2.
It is in this sense that Theorem 2 is contained in [5]. A formula for

(2p−1
p−1

)
modulo p7 is

given in [11].
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Collège Calvin
CH-1211 Geneva, Switzerland
e-mail: christian.aebi@edu.ge.ch

Grant Cairns
La Trobe University
Melbourne, Australia 3086
e-mail: G.Cairns@latrobe.edu.au


