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Choose any positive number a with three digits where the last digit is smaller than the first
one. Reverse the order of the digits and calculate a minus the reverse of a. Call the result
b and add to b the reverse of b. The result will always be 1089.

As an example consider a = 745. First we calculate 745 − 547 to obtain b = 198. And
really one has 198 + 891 = 1089 as predicted1. One can prove this fact by using very
elementary arithmetic.

It has often been transformed to a mathematical prediction trick. One finds it in many
books concerned with magical tricks with a mathematical background, and GOOGLE of-
fers more than 1.6 million links when asking for “1089 trick”.

1Note that b has to be considered as a three digit number when we reverse it: for example, the reverse of 011
is 110. If one wants to avoid this somehow artificial extra rule one could restrict oneself to numbers a where the
first digit minus the last digit is larger than one.

.

Wenn man eine dreistellige Zahl xyz (mit x > z) spiegelt und das Ergebnis zyx
von xyz abzieht, erhält man eine Zahl def . Überraschenderweise ist dann immer
de f + f ed = 1089. Dieses Phänomen wird oft für einen Zaubertrick verwendet. In
der vorliegenden Arbeit wird untersucht, was passiert, wenn man statt mit einer drei-
stelligen Zahl mit einer n-stelligen Zahl beginnt, wobei n ganz beliebig sein kann. Es
ist dann nicht mehr richtig, dass man immer das gleiche Endergebnis erhält. In der
Regel werden – je nach Startzahl – am Ende verschiedene Zahlen herauskommen, die
Anzahl möglicher Endergebnisse ist aber immer bemerkenswert klein. Zwei Tatsachen
sind überraschend. Erstens treten bei der Formulierung des Ergebnisses die Fibonacci-
Zahlen auf. Und zweitens ist der technische Aufwand, den man für den Beweis auf-
bieten muss, sehr viel höher, als man es bei so einem Problem aus der elementaren
Arithmetik vermuten würde.
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The aim of the present note is to investigate what happens if one replaces three digit num-
bers by numbers of arbitrary length. More precisely we fix an n ≥ 2, and we will consider
n-digit numbers a = a1a2 . . . an with ai ∈ {0, . . . , 9} and a1 > an . Then we calculate
a1 . . . an − an . . . a1, and we write this positive number as b1 . . . bn . Finally we calculate
b1 . . . bn + bn . . . b1, this number will be called φn(a).

Suppose, e.g., that we consider in the case n = 6 the number a = 242141. Then b1 . . . b6 =
242141−141242 = 100899, and φ6(a) = 100899+998001 = 1098900. In the case n = 4
and a = 8007 we calculate as follows: 8007 − 7008 = 0999, and 0999 + 9990 = 10989;
note that always (as in the case n = 3) b1 . . . bn has to be considered as an n-digit number,
leading zeros have to be taken into account when passing from b1 . . . bn to bn · · · b1.

Our investigations started with the observation that all φ3(a1a2a3) equal 1089 when a1a2a3
runs through the positive numbers with 3 digits such that a1 > a3. It is not true, however,
that also for larger n all φn(a1 · · · an) coincide. But we will be able to show that there
are always surprisingly few different numbers in the range of φn and that – completely
unexpectedly – Fibonacci numbers enter the scene.

We will also treat another generalization: up to now we worked in the decimal system, but
one could ask the same question if the numbers under consideration are represented other-
wise. What happens, e.g., with dyadic numbers or with numbers represented in the hexa-
decimal system when we apply the same rules? In the sequel the number B ∈ {2, 3, . . .}
will be fixed, and we will expand integers in the B-adic system. Those readers who are not
interested in the general approach should replace B by the number 10 in the sequel to stay
in the well-known decimal system.

Here are the relevant definitions:

• IB,n = {0, . . . , B − 1}n denotes the set of B-adic expansions of the integers m with
0 ≤ m ≤ Bn − 1. The elements of IB,n will be written as (a1 . . . an)B . For example,
(20045)10 is “really” the number 20045, whereas (10011)2 is the dyadic expansion
of the number 19.

• I ∗
B,n stands for the (a1 . . . an)B ∈ IB,n such that a1 > an .

• The map ρB,n : IB,n → IB,n reverses the order: ρB,n : (a1 . . . an)B �→ (an . . . a1)B .

• δB,n : I ∗
B,n → IB,n maps an (a1 . . . an)B to the B-adic expansion of the difference

(a1 . . . an)B minus ρB,n
(
(a1 . . . an)B

)
.

• σB,n : IB,n → IB,n+1 maps a (b1 . . . bn)B to the B-adic expansion of the sum of
(b1 . . . bn)B and ρB,n

(
(b1 . . . bn)B

)
; it can happen that this number has n + 1 B-adic

digits. Example: σ5,3
(
(243)5

) = (243)5 + (342)5 = (1140)5.

• And finally, φB,n : I ∗
B,n → IB,n+1 is defined by φB,n := σB,n ◦δB,n. (Note that φ10,n

coincides with the map φn that was introduced above.)

Admittedly these are rather technical definitions, but they are necessary for a formal gen-
eralization of the rule that we have described above when introducing the 1089 trick.

How many elements are there in the range of φB,n? Here is our main result:

Theorem. Depending on whether the integer n ≥ 2 is even or odd we write n as 2r or
2r +1. The sequence F1, F2, F3, . . . denotes the usual Fibonacci sequence 1, 1, 2, 3, 5, . . .
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Then precisely F2r different numbers will occur as φB,n
(
(a1 · · · an)B

)
when (a1 · · · an)B

runs through the elements of I ∗
B,n: there is 1 = F2 number for n = 2 and n = 3 (this

corresponds to the original trick), the cases n = 4 and n = 5 give rise to 3 = F4 different
numbers etc.

As two immediate consequences we note:

• The number of possible candidates for the φB,n
(
(a1 · · · an)B

)
does not depend on B .

• This number is tiny when compared with the elements of I ∗
B,n . The proportion for

even n is of order Fn/Bn ≈ (ϕ/B)n where ϕ = (1 + √
5)/2 = 1.618 . . . is the

golden ratio.

The rest of this note is devoted to the proof of this theorem. It will depend on an elementary
but nevertheless surprisingly involved analysis of the arithmetic that is used to transform
(a1 · · · an)B ∈ I ∗

B,n to φB,n
(
(a1 · · · an)B

)
. At the end of this note one finds proposals how

to use our result for a mathematical magical trick.

Reminder 1: differences. Most readers will be surprised to be reminded of some very
elementary school arithmetic in a scientific mathematical paper, but this will be necessary
to explain a definition that will be important for our investigations.

Carries will play a crucial role here, three variants will be used in the sequel (the tk , the
uk , and the vk ).

Let e = (e1 · · · en)B and d = (d1 · · · dn)B in IB,n with e > d be given. How does one
calculate e − d in B-adic expansion? One works backwards from the last digit to the first
one, sometimes – when calculating the kth digit – it might be necessary to “borrow” a
1 from the (k − 1)th digit. (It should be noted that school children are taught different
strategies: in Germany, e.g., one adds a “1” to dk−1 whereas in the USA one “borrows” a
1 from ek−1.)

The first family of carries tn+1, tn, tn−1, . . . , t1 is defined as follows: tn+1 := 0 and tk := 0
if ek ≥ dk + tk+1 and tk := 1 otherwise. Then the kth digit of e − d in B-adic expansion is
Btk + ek − (dk + tk+1) ∈ {0, 1, . . . , B − 1} (k = n, n − 1, . . . , 1). We will use the notation
C(e, d) := t1 · · · tn .
Here are two examples for the usual decimal system to illustrate this definition: (5553)10−
(1223)10 leads to t1t2t3t4 = 0000, i.e., C

(
(5553)10, (1223)10

) = 0000. And (555370)10 −
(499999)10 yields C

(
(555370)10, (499999)10

) = 011111.

Of particular interest will be the t1 . . . tn when we calculate the difference δB,n(a) = a −
ρB,n(a) for a = (a1 · · · an)B ∈ I ∗

B,n .

By τB,n : I ∗
B,n → {0, 1}n we denote the map that associates to a = (a1 · · · an)B ∈ I ∗

B,n

the pattern C
(
(a1 · · · an)B , (an · · · a1)B

)
. (So that, e.g., τ10,7

(
(4555552)10

) = 0111111.)
TB,n ⊂ {0, 1}n stands for the range of τB,n.

Our strategy to prove the theorem will be as follows: first we will determine in Lemma 2
the cardinality of TB,n, and then we will show in Lemma 3 that there is a bijection between
TB,n and the range of φB,n.
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The following facts can easily be verified:

Lemma 1. Fix a = (a1 · · · an)B ∈ I ∗
B,n and put t1 . . . tn := τB,n(a).

(i) t1 = 0 and tn = 1.

(ii) If ak > an−k+1 then tk = 0; if ak < an−k+1 then tk = 1; if ak = an−k+1 then
tk = tk+1 (k = 1, . . . , n).

(iii) For k = 1, . . . , n the kth digit of δB,n(a) is tk B + ak − (an−k+1 + tk+1) ; here, as
above, we put tn+1 := 0.

In order to be able to calculate the cardinality of TB,n by a recursion formula we will need
some further definitions:

1. T 0
B,n (resp. T 1

B,n) denotes the collection of the t1 · · · tn ∈ TB,n such that t2 = 0 (resp.

t2 = 1). And �n (resp. �0
n resp. �1

n ) stands for the cardinality of TB,n (resp. T 0
B,n

resp. T 1
B,n). We note that, by part (ii) of the preceding lemma, TB,n does not depend

on B .

2. A map μB,n : I ∗
B,n → {0, 1}n (a variant of τB,n) is defined by a = (a1 · · · an)B �→

u1 · · · un := C
(
(a1 · · · an)B, (an · · · a20)B

)
: before calculating the difference of a

and the reverse of a the last digit of this reverse is changed to zero.

It is clear that always un = 0 and u1 = 0 hold.

3. MB,n denotes the range of μB,n, and M0
B,n (resp M1

B,n) is the collection of the

u1 · · · un ∈ MB,n such that u2 = 0 (resp. u2 = 1). And 	n (resp. 	0
n resp. 	1

n)
denotes the cardinality of MB,n (resp. M0

B,n resp. M1
B,n).

Here are some concrete calculations. First we will restrict ourselves to the case of even n,
we will write n = 2r .

1) We start with n = 4. For the calculation of τB,4(a) for a certain a = (a1a2a3a4) ∈ I ∗
B,4

one only needs to know whether a2 < a3, a2 = a3 or a2 > a3. And therefore, if one wants
to identify the elements of TB,4, one only has to treat three examples. We choose (β0β0)B ,
(β000)B and (ββ00)B , where β := B − 1. The following table shows these a together
with the associated τB,4(a):

a (β0β0)B (β000)B (ββ00)B

τB,4 0101 0111 0011

It follows that �0
4 = 1, �1

4 = 2 and �4 = 3.

And here is the corresponding table for MB,4:

a (β0β0)B (β000)B (ββ00)B

μB,4 0100 0000 0010

We conclude that 	0
4 = 2, 	1

4 = 1 and 	4 = 3.
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2) Next we consider the case n = 6. This time 9 different a ∈ I ∗
B,6 have to be treated in

order to exhaust all possibilities: a2 <,=,> a5 and a3 <,=,> a4. In the table one sees
our choice of a and the corresponding τB,6:

a (β00ββ0)B (β000β0)B (β0β0β0)B (β00β00)B (β00000)B

τB,6 011001 010001 010101 011011 011111

a (β0β000)B (ββ0β00)B (ββ0000)B (βββ000)B

τB,6 000111 001011 001111 000111

Thus �0
6 = 3, �1

6 = 5 and �6 = 8; note that the pattern 000111 appears twice in this
table, it has to be counted only once.

The range of μB,6 contains the following elements:

a (β00ββ0)B (β000β0)B (β0β0β0)B (β00β00)B (β00000)B

μB,6 011000 010000 010100 011000 000000

a (β0β000)B (ββ0β00)B (ββ0000)B (βββ000)B

μB,6 000100 001010 001110 000110

It follows that 	0
6 = 5, 	1

6 = 3 and 	6 = 8.

Lemma 2.
(i) The following recursion formulas hold for r ≥ 1:

�0
2(r+1) = �2r , �1

2(r+1) = �1
2r + 	2r , 	0

2(r+1) = 	0
2r + �2r , 	1

2(r+1) = 	2r .

(ii) �2r = F2r , where F2r denotes the 2r th element of the Fibonacci sequence F1,
F2, · · · = 1, 1, 2, 3, 5, 8, . . .

(iii) Write n = 2r if n is even and n = 2r + 1 if n is odd. Then TB,n has F2r elements.

Proof. (i) It will be convenient to write an ã ∈ I ∗
B,2(r+1) in the form

ã = (a1αa2 · · · a2r−1α
′a2r )B

with α, α′ ∈ {0, . . . , B − 1} (so that, e.g., a2 denotes the third digit in ã). Put a :=
(a1 · · · a2r )B ∈ I ∗

B,2r , t1 · · · t2r := τB,2r(a) and u1 · · · u2r := μB,2r(a). Then it follows
from elementary arithmetic that:

• If α < α′ then τB,2(r+1)(ã) = 01u2 · · · u2r−101 and
μB,2(r+1)(ã) = 01u2u3 · · · u2r−100;

• If α = α′ then τB,2(r+1)(ã) = 0t2t2t3 · · · t2r−111 and
μB,2(r+1)(ã) = 0u2u2u3 · · · u2r−100;

• If α > α′ then τB,2(r+1)(ã) = 00t2 · · · t2r−111 and
μB,2(r+1)(ã) = 00t2t3 · · · t2r−110;
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The recursion formulas can now be deduced easily:

a) How many elements are there in T 0
B,2(r+1)? They are generated only when α > α′

or when α = α′. In the second case only the ã with t2 = 0 contribute, but these are
already part of the collection generated by α > α′. This proves �0

2(r+1) = �2r .

b) Only the ã with α < α′ and the ã with α = α′ and t2 = 1 count for �1
2(r+1), and all

these patterns are different: the last but one digit in the first family (from α < α′) is
0 whereas it is 1 in the second. This shows that �1

2(r+1) = �1
2r + 	2r .

c) and d) The recursion formulas for 	0
2(r+1) and 	1

2(r+1) are justified in a similar way.

(ii) By the above calculations we know that �0
4 = 	1

4 = F2, �1
4 = 	0

4 = F3 and �4 =
	4 = F4. It follows easily from the relation Fk + Fk+1 = Fk+2 and the recursion formulas
from (i) that always �0

2r = 	1
2r = F2r−2, �1

2r = 	0
2r = F2r−1 and �2r = 	2r = F2r .

This proves the claim for r ≥ 2; for r = 1 it is trivially true.

(iii) The case of even n = 2r is covered by (ii) since �2r counts the elements of TB,2r .
Now let n = 2r + 1 be odd. By Lemma 1 (ii) we know that any t1 · · · tn ∈ TB,n satis-
fies tr+1 = tr+2 since ak = an−k+1 for k = r + 1. Therefore t1 · · · tr tr+1tr+2 · · · tn �→
t1 · · · tr tr+2 · · · tn is a bijection between TB,2r+1 and TB,2r . �

Reminder 2: sums. Summation in B-adic expansion is easier than subtraction. Let d =
(d1 . . . dn)B and e = (e1 . . . en)B in IB,n be given. Denote by vk the carry that occurs when
calculating the kth digit of d + e. This means that we define v1, . . . , vn, vn+1 recursively
by vn+1 := 0, and vk = 1 (resp. vk := 0) if dk +ek +vk+1 ≥ B (resp. dk +ek +vk+1 < B);
k = n, n − 1, . . . , 1. Then the B-adic expansion of d + e is given by v1c1 . . . cn , where
ck := vk+1 + dk + ek − vk B for k = 1, . . . , n.

It will be convenient for us to have an intermediate step in our calculation: first we cal-
culate the numbers Rk := dk + ek ∈ {0, . . . , 2B − 2} (k = 1, . . . , n), and from these we
determine the B-adic expansion of d+e. For example, (34201)5+(44033)5 is calculated as

(34204)5 + (44033)5 �→ (7, 8, 2, 3, 7) �→ (133242)5;
here the carries are v1v2v3v4v5 = 11001.

Of particular interest will be the case d = (b1 · · · bn)B = δB,n(a) and e = (bn · · · b1)B for
a = (a1 · · · an)B ∈ I ∗

B,n. Let such an a be given. We already know (Lemma 1 (iii)) that the
kth digit of b = (b1 · · · bn)B := δB,n(a) is tk B + ak − (an−k+1 + tk+1). Therefore bk plus
the kth digit of ρB,n(b) is

Rk := bk + bn−k+1

= tk B + ak − (an−k+1 + tk+1) + tn−k+1B + an−k+1 − (ak + tn−k+2)

= (tk + tn−k+1)B − (tk+1 + tn−k+2).

(This is a crucial observation: the R1, . . . , Rn only depend on the tk and not on the ak .) In
order to calculate φB,n(a) as a B-adic number it remains to work from the right to the left:
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we define the vk as the carries when determining (b1 · · · bn)B + (bn · · · b1)B as above2.
Then with ck := Rk + vk+1 − vk B one has φB,n(a) = (v1c1 . . . cn)B .

Here is an example, we consider a = (5677321)10. Then δ10,7(a) = (4439556)10 and
(R1, . . . , R7) = (10, 9, 8, 18, 8, 9, 10). Consequently φ10,7(a) = (10998900)10 with
v1 · · · v7 = 1001011.

Lemma 3.

(i) Rk = Rn−k+1 , and Rk ∈ {0, B − 2, B − 1, B, 2B − 2} for all k.

(ii) The map t1 · · · tn �→ (R1, . . . , Rn) (from TB,n to {0, B − 2, B − 1, B, 2B − 2}n) is
one to one.

(iii) The map (R1, . . . , Rn) �→ v1c1 · · · cn (from the (R1, . . . , Rn) that are generated by
the (a1 · · · an)B ∈ I ∗

B,n to IB,n+1) is one to one.

Proof. (i) The symmetry is a consequence of the definition: Rk = bk + bn−k+1 for k =
1, . . . , n. That Rk lies in {0, B − 2, B − 1, B, 2B − 2} follows from the formula Rk =
(tk + tn−k+1)B − (tk+1 + tn−k+2) and the fact that Rk is the sum of two elements in
{0, 1, . . . , B − 1}.
(ii) We have to show that it is possible to reconstruct t1 · · · tn from (R1, . . . , Rn). Always
t1 = 0 = tn+1 and tn = 1 hold so that

R1 = (t1 + tn)B − (t2 + tn+1) = B − t2.

In this way we have identified t1, t2, tn . The remaining tk will be found by working re-
cursively “inwards”; from t1, t2, tn to t1, t2, t3, tn−1, tn , then to t1, t2, t3, t4, tn−2, tn−1, tn
etc.

Suppose that we know for some k ≥ 2 the t1, . . . , tk, tn−k+2, . . . , tn . What can be said
about tk+1 and tn−k+1? We consider four cases separately.

Case 1: tk = tn−k+2 = 0. In this case Rk = (tk +tn−k+1)B−(tk+1+tn−k+2) = tn−k+1 B−
tk+1 holds, where Rk is known. tk+1 and tn−k+1 can now be identified with the help of (i):
the number Rk is one of the numbers B, B − 1, 0, and this yields tn−k+1 = 1, tk+1 = 0 or
tn−k+1 = 1, tk+1 = 1 or tn−k+1 = tk+1 = 0, respectively.

Case 2: tk = 1, tn−k+2 = 0. Then Rk = (1 + tn−k+1)B − tk+1. Rk equals B, B − 1, 2B or
2B − 1, and in each case one can reconstruct tk+1 and tn−k+1. (For example, if Rk = 2B ,
then necessarily tn−k+1 = 1 and tk+1 = 0.)

Case 3 (tk = 0, tn−k+2 = 1) and case 4 (tk = tn−k+2 = 1) are treated in a similar way.
This proves (ii).

(iii) How can one find R1, . . . , Rk if v1c1 · · · cn are known? We have Rn = B − t2 so that
Rn = B or Rn = B − 1. Thus it follows in the case cn = 0 that Rn = B and vn = 1
whereas cn = B − 1 yields Rn = B − 1 and vn = 0. The number v1 is also known
by assumption so that we can start our recursion with the known numbers R1 = Rn and

2I.e., vn+1 := 0, and vk = 1 (resp. vk = 0) if Rk + vk+1 ≥ B (resp. < B).
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v1, vn . As in the proof of (ii) we work from the extreme left and right indices to the inner
ones: from 1, n to 1, 2, n − 1, n etc.

Suppose that R1(= Rn), R2(= Rn−1), . . . , Rk(= Rn−k+1) and v1, . . . , vk , vn−k+1, . . . , vn

are already found. We will determine Rk+1(= Rn−k) as well as vk+1 and vn−k . Write the
B-adic expansion of Rk+1 as (αα′)B ; here α ∈ {0, 1} and α′ ∈ {0, B − 1, B − 2}.
Step 1: First we identify vk+1 . As an example consider a case where Rk = ck = B − 1.
Then vk+1 necessarily is 0 since vk+1 = 1 would imply ck = 0. Similarly vk+1 = 0 must
hold whenever Rk = ck or – in situations where Rk = (10)B or Rk = (1, B − 2)B – when
ck equals the second (counted from left to right) B-adic digit of Rk . In all other cases one
knows that vk+1 = 1.

Step 2: We determine α′. By assumption we know vn−k+1. If this number is zero then
α′ = cn−k . In the case vn−k+1 = 1 we consider two cases. If cn−k = 0 we recall that cn−k

equals the second digit of α′ + 1 so that α′ = B − 1 and vn−k = 1 (a carry is necessary).
In the case cn−k > 0, however, we can conclude that α′ = cn−k − 1.

Step 3: What about α? Suppose that ck+1 = α′. This implies that α = vk+1. And what
happens if α′ �= ck+1? If ck+1 = 0 this is possible only if α′ = B − 1 and then necessarily
α = 0 (since Rk+1 < 2B − 1). In the case ck+1 > 0 we can conclude that the carry, if
there is one, was generated by α, i.e., α = vk+1.

Step 4: vn−k again. For certain cases vn−k was calculated already in Step 2. But now
we know more: vn−k can be determined easily from α, α′ and vn−k+1: if α = 1 or α′ +
vn−k+1 = B then vn−k = 1, and otherwise it follows that vn−k = 0. �

The proof of the theorem is now easy: Write n = 2r or n = 2r + 1. By Lemma 2 there
are F2r elements in TB,n, and by Lemma 3 there is a bijection between TB,n and the
range of φB,n.

We conclude this note with some examples and remarks:

1. The numbers Rk lie in {2B − 2, B, B − 1, B − 2, 0}, and the kth digit of the final
result is the last digit of Rk + vk+1. This explains why all digits of the φB,n(a) lie in
{0, 1, B − 1, B − 2}.
2. If one deals with 4 digits there will be F4 = 3 different numbers in the range of φB,4. In
the following table they are depicted for the case B = 10, and the associated t1t2t3t4 are
also shown. For example, all a = (a1a2a3a4)10 ∈ I ∗

10,4 for which the associated t1t2t3t4
equals 0101 (i.e., all a with a2 < a3) give rise to φ4,10(a) = 9999.

t1t2t3t4 0101 (or: a2 < a3) 0011 (or: a2 > a3) 0111 (or: a2 = a3)

9999 10890 10989

3. And here are the three numbers for n = 5:

t1t2t3t4t5 00111 (or: a2 < a4) 01001 (or: a2 > a4) 01111 (or: a2 = a4)

99099 109890 109989
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4. The preceding tables can easily be transformed for the case of B-expansions: 1, 0, 8, 9
have to be replaced by 1, 0, B − 2, B − 1, respectively.

5. Here are two proposals how to use the results of this paper for a mathematical magical
trick:

a) Let a spectator choose a number a = a1a2a3a4 with 4 digits. (Unless one works
with mathematicians one should use the decimal system.) Two conditions should be
satisfied: a1 > a4 and a2 > a3.

Then let him or her calculate φ10,4(a). You, the magician, have prepared an envelope
with the prediction φ10,4(a) = 10890 and you can be sure that it will be true. If you
prefer to impose the condition a2 < a3 then the result of the spectator’s calculation
will be 9999.

b) The same idea can be used for integers of arbitrary length. We illustrate this idea for
numbers with 10 digits in the decimal system:

Your spectator chooses 5 pairs of digits: (x1, y1), . . . , (x5, y5) (with xi , yi in the set
{0, 1, . . ., 9}). The only condition is that xk > yk for all k. From these pairs we glue
together the number a = x1x2 . . . xn yn . . . y1 with 10 digits, i.e., we put together first
all xk and then the yk in reverse order. Then we are sure that t1 . . . t10 = 0000011111,
and thus we can predict the result by calculating φ10,10(a) for any a of this type: one
can guarantee that we will arrive at 10999890000.

6. Readers who are interested in another connection between Fibonacci numbers and math-
ematical magic should consult the paper “Fibonacci goes magic” by the author of this note
(Elemente der Mathematik 68, 2013, pp. 1–9).
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