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1 Introduction
Hyperbolic geometry 1 was created in the first half of the nineteenth century in the midst of
attempts to understand Euclid’s axiomatic basis for geometry. The mathematicians at that
time were mainly driven by the question whether the parallel axiom was redundant or not.
It turned out that it was not. Hyperbolic geometry is now one type of non-Euclidean ge-
ometry that discards the parallel axiom. Einstein and Minkowski found in non-Euclidean
geometry a geometric basis for the understanding of physical time and space. These neg-
atively curved geometries, of which hyperbolic non-Euclidean geometry is the prototype,
are the generic forms of geometry. They have profound applications to the study of com-

1The italic text stems from [3]

.

In der Funktionentheorie der Einheitskreisscheibe D spielt die hyperbolische Geome-
trie eine zentrale Rolle. Bekanntlich sind wegen des Lemmas von Schwarz–Pick die
holomorphen Isometrien bezüglich dieser Geometrie nichts anderes als die konfor-
men Selbstabbildungen von D. Über das Konvergenzverhalten einer Potenzreihe am
Rand ihres Konvergenzkreises gibt der Abelsche Grenzwertsatz Auskunft. Dabei spielt
der sogenannte Stolz-Winkel eine zentrale Rolle. In der vorliegenden Arbeit untersu-
chen die Autoren, ob die Schar der Kreisscheiben Dρ(x, r) mit festem Radius r und
−1 < x < 1 bezüglich der pseudohyperbolischen Metrik ρ in D einen solchen Stolz-
Winkel bilden. Dazu bestimmen sie mit Hilfe funktionentheoretischer Mittel explizit
die Einhüllende der besagten Kreisschar.
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Fig. 1 Tilings of the Poincaré disk [6]

plex variables, to the topology of two- and three-dimensional manifolds, to group theory,
to physics, and to other disparate fields of mathematics. Outside mathematics, hyperbolic
tesselations of the unit disk have been rendered very popular by the artist M.C. Escher.
A nice introduction into hyperbolic geometry is, for example, given in the monograph [1]
and in [3].
In our note we are interested in the Poincaré disk model. So let D = {z ∈ C : |z| < 1} be
the unit disk in the (complex) plane which we identify with R2. The lines/geodesics with
respect to the hyperbolic geometry in this model are arcs of Euclidean circles in D that are
orthogonal to the unit circle T := {z ∈ C : |z| = 1} of D (see Figure 2). Given a line C in
the hyperbolic geometry and a point a ∈ D not belonging to C , there are infinitely many
hyperbolic lines parallel to C (in other words disjoint from C) and passing through a (see
Figure 2). The hyperbolic distance P(a, b) of two points a and b is the hyperbolic length
of the associated geodesic and is therefore given by the integral L(γ ) := ∫

γ
2 |dz|
1−|z|2 over

the unique circular arc γ passing through a and b and orthogonal to T. Note that L(γ ) =
inf L(�), where � is any smooth curve joining a with b. Or if one prefers a nice formula:

|a − b|2
(1 − |a|2)(1 − |b|2) = 1

2

(
eP(a,b) + e−P(a,b)

2
− 1

)
.

Let

ρ(a, b) = tanh

(
1

2
P(a, b)

)
.

Then ρ(a, b) is called the pseudohyperbolic distance of the two points a, b and is given by

ρ(a, b) :=
∣∣∣∣ a − b

1 − ab

∣∣∣∣ .
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a

C

Fig. 2 Infinitely many lines parallel to line C and passing through point a.

In other words,

P(a, b) = log
1 + ρ(a, b)

1 − ρ(a, b)
.

It is this pseudohyperbolic distance that we will work with, because this seems to be the
most suitable for function theoretic aspects.

2 Function theoretic tools
Given a ∈ D and 0 < r < 1, let

Dρ(a, r) = {z ∈ D : ρ(z, a) < r}
be the pseudohyperbolic disk centered at a and with radius r . It is a simple computational
exercise in complex analysis, that Dρ(a, r) coincides with the Euclidean disk D(p, R)
where

p = 1 − r2

1 − r2|a|2 a and R = 1 − |a|2
1 − r2|a|2 r .

An important feature of the hyperbolic metric within function theory comes from the
Schwarz–Pick lemma which tells us that the holomorphic isometries with respect to ρ
(or P) are exactly the conformal self-mappings of the disk:

Theorem 2.1 (Schwarz–Pick Lemma). Let f : D → D be holomorphic. Then, for every
z, w ∈ D,

ρ( f (z), f (w)) ≤ ρ(z, w),

with equality at a pair (z, w), z �= w, if and only if

f (z) = eiθ a − z

1 − az

for some a ∈ D and θ ∈ [0, 2π[.
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Proof. This is an immediate corollary to the Schwarz lemma (see, e.g., [5]) by considering
the function

F := S f (w) ◦ f ◦ Sw,

where for a ∈ D,

Sa(z) = a − z

1 − az
is the conformal automorphism of D interchanging a with the origin.

Consider now the set of all pseudohyperbolic disks Dρ(x, r), x ∈ ] − 1, 1[, with fixed
radius r ∈ ]0, 1[. In studying the boundary behaviour of holomorphic functions in the
disk, it is of interest to know whether the set

⋃
x∈]−1,1[ Dρ(x, r) belongs to a cone

�(β) :=
{
z ∈ D : |Im z|

1 − Re z
< tanβ

}
with cusp at z = 1 and angle 2β such that 0 < β < π/2. A positive answer is known
among specialists in hyperbolic geometry. We never encountered a proof, though, avail-
able for function theorists. It is the aim of this note to provide such a proof. For a nice
introduction into the function theoretic aspects of the hyperbolic geometry, see [2].

3 A union of hyperbolic disks

z 1

1 r 1
2 0 1

Fig. 3 The boundary of a union of hyperbolic disks with fixed radius

Here is the assertion we are going to prove.

Theorem 3.1.

(1) The upper boundary C + of
⋃

−1<x<1

Dρ(x, r) is an arc of the circle

C :=
{

w ∈ C :
∣∣∣∣∣w + i

1 − r2

2r

∣∣∣∣∣ = 1 + r2

2r

}
,

the lower boundary is its reflection with respect to the real axis (see Figure 3).
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(2) The tangens of the angle β under which C + cuts the real axis is 2r/(1 − r2).

0 ( ) 0

max

min

( )( )

Fig. 4 Hyperbolic disks

Before we give our proof, we observe that the largest distance dmax, respectively, if |a| > r ,
the smallest distance dmin, of a point in Dρ(a, r) to 0 are given by

dmin = |a| − r

1 − r |a| and dmax = |a| + r

1 + r |a| .

This can be seen by considering the conformal automorphism of the disk given by ϕ(z) =
a−z
1−az , by noticing that the image of the disk D(0, r) = Dρ(0, r) is the disk D(p, R) and by
calculating the images of the boundary points ±rei arg a which lie on the half-line passing
through 0 and a (see Figure 4).

Proof. (1) The proof is best done via a conformal mapping of D onto the right half-plane
(see Figure 5).

0

Fig. 5 The boundary of a union of hyperbolic disks with fixed radius in the right half-plane

Recall that if −1 < x < 1, then the function Sx , given by Sx (z) = (x − z)/(1 − xz),
maps the disk D(0, r) onto Dρ(x, r) with xM := Sx (−r) = (x + r)/(1 + xr) and xm :=
Sx (r) = (x −r)/(1−xr). Since Sx maps [−1, 1] onto [−1, 1], and since the circle D(0, r)
cuts [−1, 1] at a right angle, the angle invariance property of conformal maps implies that
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Dρ(x, r) is the disk passing through the points xm and xM and orthogonal to [−1, 1]. Now
we switch to the right half-plane H by using the map 
(z) := (1 + z)/(1 − z) of D onto
H . Then, by a similar reasoning, K := 
(Dρ(x, r)) is the disk orthogonal to the real axis
and passing through the points

wm := 
(xm) = 1 − r

1 + r

1 + x

1 − x
and wM := 
(xM) = 1 + r

1 − r

1 + x

1 − x
.

Hence the center Cx of K is the arithmetic mean (wM + wm)/2 of wm and wM , and the
radius Rx is (wM − wm)/2. Thus

Cx = 1 + r2

1 − r2

1 + x

1 − x
and Rx = 2r

1 − r2

1 + x

1 − x
.

Note that if the center x of the pseudohyperbolic disk Dρ(x, r) runs through ]−1, 1[, then
the center Cx of the Euclidean disk 
(Dρ(x, r)) runs through ]0,∞[. Due to conformal
invariance, the boundary C of

⋃
−1<x<1 Dρ(x, r) coincides with the preimage 
−1(C̃ )

of the boundary C̃ of

S :=
⋃

−1<x<1


(Dρ(x, r)) =
⋃

−1<x<1

K (Cx , Rx ).

We show that C̃ is the union of the half-line {eiβ t : t ≥ 0} and its reflection {e−iβ t : t ≥ 0},
where β is the angle with sin β = 2r/(1 + r2) (for a first glimpse, see Figure 5).

For a fixed x ∈ ] − 1, 1[, consider in the first quadrant the tangent T to K (Cx , Rx ) that
passes through the origin. Let βx be its angle with respect to the real axis. Then

sinβx = Rx

Cx
= 2r

1 + r2
.

This is independent of x . Hence T is a joint tangent to all the Euclidean disks K (Cx , Rx ).
In other words, S is contained in the infinite triangle � formed by T and its reflection. To
show that � = S, we need to prove that every point on T is the tangent point of some of
the disks K (Ca, Ra) with −1 < a < 1. To this end, let P be the point on T whose distance
to 0 is t and let Tt be the line orthogonal to T and passing through P . Then Tt cuts the real
line at a point xt . The unique disk K centered at xt and having P as its tangent point to T
has center C(t) and radius R(t), which are given by

C(t) = xt and R(t) = xt sin β = xt 2r/(1 + r2)

(see Figure 6). Now

xt = t

cosβ
= t√

1 − sin2 β

= t
1 + r2

1 − r2
.
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T

K

( )
0

( )

Fig. 6 The tangent T

But t = (1 + a)(1 − a) for a unique a ∈ ] − 1, 1[. Thus

xt = 1 + a

1 − a

1 + r2

1 − r2
= Ca

and

R(t) = xt 2r/(1 + r2) = 1 + a

1 − a

2r

1 − r2
= Ra.

We conclude that
K = 
(Dρ(a, r)) = K (Ca, Ra).

By moving back from the right half-plane to the unit disk, we see that C + = 
−1(T ) is
an arc of a circle C which passes through −1 and 1 and cuts twice the axis [−1, 1] under
the angle β with sin β = 2r/(1 + r2). Using Figure 7, we then deduce that the radius R of
C coincides with the hypotenuse of the displayed triangle and so

R = 1

cosα
= 1

sin(π
2 − α)

= 1

sin β
= 1 + r2

2r
.

2

10

1 2
2

1 2
2

1

Fig. 7 The angle β
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This implies that the center C of C is given by

C = −i R sin α = −i
1 + r2

2r

√
1 − cos2 α = −i

1 + r2

2r

1 − r2

1 + r2
= −i

1 − r2

2r
.

(2) tanβ = sin(π/2 − α)/ cos(π/2 − α) = cosα/ sinα with

sin α =
1−r2

2r
1+r2

2r

= 1 − r2

1 + r2 and cosα = 1
1+r2

2r

= 2r

1 + r2 .

Hence tanβ = 2r/(1 − r2) (see Figure 7).

A purely computational proof can be found in [4, Appendix]. There it is also shown

that the Euclidean length of C + is 2 1+r2

r arctan r , and that the surface enclosed by⋃
−1<x<1 Dρ(x, r) has Euclidean measure

(
1+r2

r

)2
arctan r − 1−r2

r .
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