
Elem. Math. 71 (2016) 1 – 6
0013-6018/16/010001-6
DOI 10.4171/EM/294

c© Swiss Mathematical Society, 2016

Elemente der Mathematik

Pascal, Fibonacci, and geometry

Jean Pedersen and Hans Walser

Jean Pedersen (1934–2016) was a Professor of Mathematics in the Department of
Mathematics and Computer Science at Santa Clara University. Her principal research
involved studying the interconnections between systematic paper folding, polyhedral
geometry, combinatorics, and number theory.

Hans R. Walser is a now retired college teacher. He was also teaching at the ETH-
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1 Background

The fact that the Fibonacci numbers appear by adding up appropriate entries in slanting
rows of Pascal’s triangle is by now almost ubiquitous. The purpose of this article is to
show how the authors eventually came to view the Fibonacci numbers as they relate to the
Pascal triangle so that the results may be generalized.

2 Notation

In what follows we will use an expanded notation for the binomial coefficient
(n
r

)
that

renders it amenable to a more symmetric geometric interpretation and easier to generalize.

Thus we will write
(

n

r

)
=

(
n

r s

)
= n!

r !s! , where r + s = n ≥ 0. (1)

.

Das Pascalsche Dreieck der Binomialkoeffizienten ist ein beliebtes Tummelfeld für
zahlentheoretische Entdeckungen im Unterricht. Insbesondere erscheinen die Fibo-
nacci-Zahlen als Schrägzeilensummen. Diese Ideen lassen sich in den Raum übertra-
gen. Anstelle des Dreiecks erhalten wir die Pascal Pyramide der Trinomialkoeffizien-
ten. Statt mit Schrägzeilen wird dann entsprechend mit schrägen Schnittebenen durch
die Pascal Pyramide gearbeitet, um die Tribonacci Zahlen zu erhalten.
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Further, we define (
n

r s

)
= 0 , if either r < 0 or s < 0. (2)

The Pascal identity, usually written as
(n−1
r−1

) + (n−1
r

) = (n
r

)
, now becomes

(
n − 1

r − 1 s

)
+

(
n − 1

r s − 1

)
=

(
n

r s

)
. (3)

Notice how easy it is, with this notation, to guess what the corresponding identity would
be for trinomial coefficients

( n
r s t

)
.

3 The Fibonacci numbers

We now place the binomial coefficients
( n
r s

)
in a hexagonal lattice as shown in Figure

1. Two of the zero entries have been included, since they pertain to a particular, but not
special case, that illustrates why the sum of the numbers along slanting rows gives the
Fibonacci numbers.
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Fig. 1 Visualization of the Fibonacci recurrence.

The sum of a number in the upper slanting row and a number in the middle row is, by
the Pascal identity (3), a number of the lower slanting row, which is crosswise shaded.
Furthermore, every number in the upper slanting row, and every number in the middle
row, is used exactly once as part of a number in the lower slanting row. Hence the sums in
the slanting rows satisfy the Fibonacci recurrence relation

Fk = Fk−1 + Fk−2. (4)

Since F1 = F2 = 1 we get the usual Fibonacci sequence.
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4 The geometry of slanting lines
We use the affine coordinate system of Figure 2.
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Fig. 2 Coordinate system.

In this coordinate system we consider the slanting lines of Figure 1 that have the equation:

x + 2y = k , where k ≥ 0. (5)

The centers of the hexagons have non-negative integer coordinates. Hence we get a new
way to look at the Fibonacci numbers.
As illustration consider the particular but not special case k = 6 shown in Figure 2. The
corresponding line has the equation x + 2y = 6 with the following non-negative integer
solutions: (0, 3) , (2, 2) , (4, 1) , (6, 0). Now we take the sum S6 of the corresponding bi-
nomial coefficients of the form

( x+y
y x

)
, with x + 2y = 6, (going down the sloping line

from right to left)

S6 =
(

3

3 0

)
+

(
4

2 2

)
+

(
5

1 4

)
+

(
6

0 6

)
= 1 + 6 + 5 + 1 = 13,

and find that the sum S6 is the Fibonacci number F7. In general we have:

Sk =
∑

non-negative
integer solutions

of x+2y=k

(
x + y

y x

)
= Fk+1. (6)

5 The trinomial coefficients and the Pascal pyramid
We deal with the trinomial coefficients(

n

r s t

)
= n!

r !s!t ! , where r + s + t = n (7)
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with the Pascal identity(
n − 1

r − 1 s t

)
+

(
n − 1

r s − 1 t

)
+

(
n − 1

r s t − 1

)
=

(
n

r s t

)
. (8)

We replace the hexagonal lattice by a spatial lattice of regular rhombic dodecahedra. In-
stead of a regular triangle we have now a regular tetrahedron, sometimes called the Pascal
pyramid, shown in Figure 3.

Fig. 3 The Pascal pyramid.

Again we introduce an affine coordinate system as shown in Figure 4.
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Fig. 4 Fourth layer.

Cutting the pyramid by horizontal planes we see how the trinomial coefficients sit in the
horizontal layers of the Pascal pyramid (see [1, 2]). Figure 4 shows the situation in the
fourth layer, the trinomial coefficients for

( 4
r s t

)
, where r + s + t = 4.
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6 Slanting planes

Now we intersect the Pascal pyramid with slanting planes pk with the equations:

pk : x + 2y + 3z = k, where k ≥ 0.

Figure 5 gives the situation for k = 5 with the equation x +2y+3z = 5. The non-negative
integer solutions to this equation are (0, 1, 1) , (1, 2, 0) , (2, 0, 1) , (3, 1, 0) , (5, 0, 0).
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Fig. 5 k = 5.

The sum T5 of all trinomial coefficients of the form
( x+y+z
x y z

)
, with x + 2y + 3z = 5, in

the plane p5 is:

T5 =
(

2

0 1 1

)
+

(
3

1 2 0

)
+

(
3

2 0 1

)
+

(
4

3 1 0

)
+

(
5

5 0 0

)

= 2 + 3 + 3 + 4 + 1 = 13.

Now we define in general Tk the sum of all trinomial coefficients of the plane pk . For Tk

we have the recurrence relation:

Tk = Tk−1 + Tk−2 + Tk−3. (9)

Proof. Let (r, s, t) be a point of pk , i.e., a solution of x + 2y + 3z = k. Then (r − 1, s, t)
is a solution of x + 2y + 3z = k − 1, hence a point of pk−1, and (r, s − 1, t) a solution of
x+2y+3z = k−2, a point of pk−2, and finally (r, s, t − 1) a solution of x+2y+3z = k−3,
i.e., a point of pk−3.

Because of the Pascal identity (8) every summand of Tk is the sum of a particular summand
of Tk−1, Tk−2, and Tk−3. On the other side, every summand of Tk−1, Tk−2, or Tk−3 appears
exactly once in Tk .

A rhombic dodecahedron with its center on the plane pk is touched on its “roof” with the
three rhombic dodecahedra whose centers lay on the three parallel planes pk−1, pk−2, and
pk−3 respectively.

For the starting values T0, T1, T2 we get respectively:
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k = 0: The equation x + 2y + 3z = 0 has the only non-negative integer solution (0, 0, 0).
Since

( 0
0 0 0

) = 1 we have T0 = 1.

k = 1: The equation x + 2y + 3z = 1 has the only non-negative integer solution (1, 0, 0).
Therefore we have T1 = ( 1

1 0 0

) = 1.

k = 2 : The equation x + 2y + 3z = 2 has the non-negative integer solutions (0, 1, 0) and
(2, 0, 0). Therefore we have T2 = ( 1

0 1 0

) + ( 2
2 0 0

) = 1 + 1 = 2.

The general formula for Tk is:

Tk =
∑

non-negative
integer solutions
of x+2y+3z=k

(
x + y + z

x y z

)
.

From the starting values 1, 1, and 2 the recurrence relation (9) yields the sequence of the
so-called Tribonacci numbers:

1, 1, 2, 4, 7, 13, 24, 44, . . . . �

References

[1] P. Hilton, D. Holton, and J. Pedersen (2002): Mathematical Vistas: From a room with many windows,
Springer, NY.

[2] P. Hilton and J. Pedersen (2012): Mathematics, Models, and Magz, Part 1: Investigating patterns in Pascal’s
triangle and tetrahedron, Math. Mag., 85, 97–109.

Jean Pedersen

Hans Walser
Department of Mathematics
Basel University
CH-4051 Basel, Switzerland
e-mail: hwalser@bluewin.ch


