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1 Introduction: Cayley on trees

A tree is by definition a connected graph without circuit. This notion has been introduced
in 1847 by Gustav Robert Kirchhoff in context of his studies on electric networks and
(independently) Karl Georg Christian von Staudt (cf. Biggs et al. [3, p. 38]). Ten years
later, Arthur Cayley started his studies on trees motivated by a similarity between these
objects and differential operators. Meanwhile trees have been studied within graph theory
for various reasons and even with respect to applications outside mathematics. Interest-

.

Das Betätigungsfeld des Mathematikers Adolf Hurwitz (1859–1919) kann als erstaun-
lich facettenreich beschrieben werden. Insbesondere in den mathematischen Notizbü-
chern des langjährigen ETH Professors, die heute in der Bibliothek der ETH Zürich
verwahrt werden, lassen sich unerwartete Arbeiten sowie Beweisskizzen zu Themen-
feldern aus nahezu allen Disziplinen der Mathematik finden. So auch ein Eintrag aus
dem Jahr 1918, in dem Hurwitz Ansätze von Arthur Cayley (1821–1895) aufgreift, um
die Anzahl von speziellen Bäumen im graphentheoretischen Sinne zu bestimmen, so
genannte Isomere von Alkanen. Diese Aufgabenstellung aus der Chemie beruht auf
der Darstellung chemischer Verbindungen durch Strukturformeln, welche sich seit den
1860er Jahren etabliert hatten. Hurwitz’ Arbeiten hierzu blieben unveröffentlicht und
sind weitgehend unbekannt. Interessanterweise ging sein junger Kollege George Pólya
(1887–1985) Jahre nach Hurwitz das gleiche Problem mit neuen Methoden an und
erzielte dadurch grosse Fortschritte.
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ingly, Cayley considered rooted trees in order to distinguish isomorphic objects.1 Using
the method of generating functions, Cayley succeeded in establishing a recursive formula
for the number An of rooted trees with n edges. Moreover, building on the identity

(1 − x)−1(1 − x2)−A1(1 − x3)−A2(1 − x4)−A3 · · · = 1 + A1x + A2x
2 + A3x

3 + · · · ,

he computed the quantities An for increasing n as

1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, 12486, . . .

(that is sequence A000081 in Sloane’s On-Line Encyclopedia of Integer Sequences,
oeis.org).

Around the same time structural formulae have been introduced for chemical compounds
by several chemists independently, for example, by August Friedrich Kekulé in 1854 and
Archibald Couper a little later (cf. [3, p. 56]). Already in 1874 Cayley published a paper
[5] on the mathematical theory of isomers in which he applied his theory of trees to alkanes
CnH2n+2 (also paraffine as it appears in Hurwitz’s notes). Whereas alkanes are uniquely
determined by the structural formula CnH2n+2 for n = 1, 2, 3 (namely, methane, ethane,
and propane) already in the case n = 4 (butane) there exists an isomer:

butane:

C C C C

isobutane: C

C C

C

For the sake of simplicity we have stripped off all hydrogens in the above kenograms
(molecular graphs). In order to see that by this procedure no information about the mole-
cule is lost recall that carbon has valence 4 and hydrogen has valence 1. This gives exactly
ten hydrogen atoms for both kenograms, each of which bound to one carbon atom.2 With
increasing n the number of isomers grows. One year later, Cayley [6] computed the number
of isomers of CnH2n+2 up to n = 13, his first eleven values being correct:

1, 1, 1, 2, 3, 5, 9, 18, 35, 75, 159 ;
see Rains & Sloane [24] (and A000602 in Sloane’s On-Line Encyclopedia)3 for more
values and further information. Cayley’s method relies on a recurrence; a slightly different
approach by Adolf Hurwitz aims at computing the number of isomers explicitly.

The ETH professor was an integral part of the European mathematical community of his
time. He had obtained his doctorate supervised by Felix Klein at the Universities of Mu-
nich and Leipzig, was supported by Karl Weierstrass and Hermann A. Schwarz in Berlin

1A tree with a distinguished vertex (the root) is called a rooted tree. For further notions from graph theory we
refer to Diestel [8]. Nevertheless, aiming at a language close to Hurwitz’s original, we try to avoid the use of
graph theory as much as possible.
2Actually, by this reasoning we only omit the proof that the structure formula for alkanes is indeed correct and

this follows from a simple application of the handshaking lemma.
3Actually, A00602 counts the number of unrooted quartic trees and unlabeled nodes; the unrooted trees represent

the carbon ‘skeletons’ with all hydrogen atoms erased (as in the kenograms for n = 4 above).
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and Göttingen and had received his first professorship at the University of Königsberg
on promotion of Ferdinand von Lindemann in 1884. When he and his family moved to
Zurich in 1892, Adolf Hurwitz became an active member of the scientific Swiss commu-
nity. He was an engaged ETH teacher and researcher until his death in 1919. Throughout
his academic life, Hurwitz not only published a huge number of mathematical articles,
he furthermore wrote 30 mathematical notebooks4 [15] which are nowadays stored in the
ETH archive (ETH-Bibliothek) providing a “rich treasure trove for interesting and further
examination appropriate thoughts and problems” as his friend and colleague David Hilbert
stated in [12, p. 199].

2 Hurwitz’s diary entry
Adolf Hurwitz’s last diary contains an entry of ten pages length related to the counting
problem of isomers of alcanes, bearing the date 20 May 1918. The short introduction to
the problem shows that Hurwitz knew about Cayley’s work,5 for counting the isomers
of hydrocarbons CnH2n+2, however, Hurwitz followed another strategy which we shall
explain now in detail.
In view of carbons having valency 4 we may call a carbon of primary (resp. secondary,
tertiary, quartenary) type if it is bound to exactly one (resp. two, three, four) further carbon
atom. Accordingly, the number of carbons and hydrogens in CnH2n+2 can be rewritten as{

κ1 + κ2 + κ3 + κ4 = n,

3κ1 + 2κ2 + κ3 = 2n + 2,
(1)

respectively, where κ1 counts the number of primary carbons, κ2 the number of secondary
carbons, and so forth. Now let us consider each carbon skeleton as a graph. Since each edge
(a chemical bond) connects two vertices (carbons), the number of edges can be computed
from (1) as

1
2 (κ1 + 2κ2 + 3κ3 + 4κ4) = 1

2 {(4(κ1 + κ2 + κ3 + κ4) − (3κ1 + 2κ2 + κ3)} = n − 1.

Consequently, any such graph is indeed a tree. Moreover, we deduce the inequality κ1 ≤
2 which immediately implies that the number m2(n) of isomers of CnH2n+2 with two
carbons of primary type is equal to m2(n) = 1. Moroever, one can easily deduce κ1 ≤
2(n+1)

3 , and although Hurwitz did not write this down in his diary entry, it seems that he
first followed the idea of counting isomers according to increasing values for κ1, but for
some reason changed his mind later (see Figure 1). A few pages later Hurwitz computed
his first non-trivial number of isomers of a certain type, namely: the number m3(n) of
isomers of CnH2n+2 with exactly three primary carbons is given by

m3(n) =
⌊

n(n − 2) + 4

12

⌋
, (2)

where �x� denotes the largest integer less than or equal to x . For this purpose, following
Hurwitz, we distinguish isomers with exactly three primary carbons with respect to their

4See more about Adolf Hurwitz’s life and work in [18] as well as about the variety of his mathematical diaries
in [20].
5Since Hurwitz copied Cayley’s erroneous data for the number of rooted trees with n edges, we may assume

that he did not study Cayley’s papers in detail.
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Figure 1 Hurwitz’s diary entry includes a complete list of all kenograms of CnH2n+2 isomers
for n = 3, . . . , 9, [15, p. 2].

longest chain. First we consider those isomers having a longest chain of n − 1 carbons. In
this case there are n − 3 vertices where an additional carbon can be added (for an isomer
with three primary carbons), however, some of the possible molecules are identical (e.g.,
the pair where the carbon is either added at second position or position n − 2). Taking into
account the parity of n, the number of isomers having a longest chain consisting of exactly
n − 1 edges equals

1

2

(
n − 2 + (−1)n − 1

2

)
.

The above reasoning is based on the simple observation, used by Hurwitz several times,
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Figure 2 Quotation with Formula (2) from Hurwitz’s diary [15, p. 3].

that removing a leaf 6 from a tree with n vertices leads to a tree with n − 1 vertices while
adding a leaf to a tree with n − 1 vertices gives a tree with n vertices. The number of
isomers having a longest chain of less than n − 1 carbons, however, equals m3(n − 3). In
fact, there is a bijection between the set of those isomers and the set of ‘reduced isomers’
where all carbons of primary type are stripped off and the number of primary carbons is
still equal to 3; for example the isomer (2, 2, 2) in Figure 1 is mapped to isobutane. Hence,
we arrive at the recursion

m3(n) = m3(n − 3) + 1

2

(
n − 2 + (−1)n − 1

2

)
,

valid for n ≥ 3, with the initial values m3(0) = m3(1) = m3(2) = 0. Next, the generating
function can be computed as

∑
n≥0

m3(n)xn = x3
∑
n≥0

m3(n)xn + 1

2
x3

(∑
n≥0

(n + 1)xn − (−1)n + 1

2
xn

)

= x3
∑
n≥0

m3(n)xn + 1

2
x3

(
1

(1 − x)2
− 1

1 − x2

)

= x4

(1 − x)(1 − x2)(1 − x3)
,

where we have used formulae for the geometric series and its derivatives. In order to find an
explicit formula for the coefficients, Hurwitz made use of an interesting formula from his
‘exercise book’ which has posthumously been published as Exercises on Number Theory
[14],7 namely

1

(1 − x)(1 − x2)(1 − x3)
=

∑
x1,x2,x3≥0

x x1+2x2+3x3 =
∑
n≥0

ϕ(n)xn (3)

where

ϕ(n) =
⌊

n(n + 6)

12

⌋
+ 1. (4)

6that is a vertex of a tree with degree 1.
7The formula in question can there be found as Exercise 65 on page 63.
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The easy proof is by the formula for the geometric series and partial fraction decomposi-
tion. In fact, it is just a matter of computation to find

1

(1 − x)(1 − x2)(1 − x3)

= 17

72(1 − x)
+ 1

4(1 − x)2
+ 1

6(1 − x)3
+ 1

8(1 + x)
+ 1

9

(
z

z − x
+ z2

z2 − x

)

with z being a primitive third root of unity z = − 1
2 + i

√
3

2 . Next, applying the formula for
the geometric series and derivatives, one gets

17

72

∑
n≥0

xn + 1

4

∑
n≥0

(n + 1)xn + 1

6

∑
n≥0

1

2
(n + 2)(n + 1)xn+

+ 1

8

∑
n≥0

(−1)nxn + 1

9

(∑
n≥0

znxn +
∑
n≥0

z2nx2n
)

=
∑
n≥0

ϕ(n)xn,

where

ϕ(n) = 17

72
+ 1

4
(n + 1) + 1

12
(n + 1)(n + 2) + 1

8
(−1)n + 1

9
(zn + z2n)

= n(n + 6)

12
+ 47 + 9(−1)n + 8(zn + z2n)

72
.

It is not difficult to see that the second term on the right-hand side is so small such that the
integer ϕ(n) equals the integral part of the first term on the right. This proves Hurwitz’s
exercise (4) as well as Formula (2).

Moreover, Hurwitz found another aspect from his counting isomers by noticing that m3(n)
also equals the number of solutions of the linear diophantine equation

n − 4 = 1x1 + 2x2 + 3x3 (5)

in non-negative integers. This follows immediately from (3). Consequently, there exists
a bijection between the solutions of the latter equation and the isomers in question. Of
course, Hurwitz used a different language, his reasoning, however, provides an interesting
characterization: those isomers having a longest chain equal to n − 1 are associated with
solutions of the form (x1, x2, 0). All other isomers have a longest chain of length at most
n − 2 and thus contain a subtree associated with a solution (x1, x2, x ′

3); hence the larger
isomer is related to the solution (x1, x2, x ′

3 + 1). Indeed, given a molecule consisting of
three primary and one tertiary carbon (isobutane) we may add a chain of x3 many carbons
to each of the three ends, then further x2 carbons at two of the three ends, and, finally, x1
carbons to one of the two ends from the x2 carbon chains were attached (see Figure 3).
Hurwitz gave even another characterization, however, the one above is more relevant for
his and our next aim, namely, the case of four carbons of primary type.

Here Hurwitz provided a similar result: The number m4(n) of isomers CnH2n+2 having
exactly four carbons of primary type equals the coefficient of xn−5 in the power series
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x3

x2

x1

Figure 3 An example for Hurwitz’s characterization.

Figure 4 Actually, Hurwitz was reluctant whether his derivation of Formula (6) is without any
miscalculation. Our study confirms that he was indeed correct.

expansion of

1 + x + x2 + 2x3 + x4 + 3x5 + 2x6 + x7

(1 − x)(1 − x2)(1 − x3)(1 − x4)2
. (6)

For the proof we first observe that (1) implies that either κ4 = 1 and κ3 = 0 or κ4 = 0 and
κ3 = 2 (see Figure 5).

K4 = 1 and K3 = 0 K4 = 0 and K3 = 2

Figure 5 The two categories of isomers having exactly four primary carbons.
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With a rather analogous reasoning as above we may identify any such isomer having κ4 =
1 and κ3 = 0 with a solution of

n − 5 = x1 + 2x2 + 3x3 + 4x4 (7)

in non-negative integers xi . For n ≥ 5 the number of such solutions is equal to the coeffi-
cient of xn−5 in the series expansion of

1

(1 − x)(1 − x2)(1 − x3)(1 − x4)
.

The isomers with κ4 = 0 and κ3 = 2, however, are related to the integer solutions of

n − 6 = x1 + x2 + 2x3 + x4 + 2x5 (8)

under the additional restriction x2 + 2x3 ≤ x4 + 2x5. The inequality here avoids counting
of isomorphic trees twice. It follows that the latter number of solutions is given by the
coefficient of xn−6 in the series expansion of

1

2

(
1

(1 − x)3(1 − x2)2
+ 1 + x4

(1 − x)(1 − x2)(1 − x4)2

)
= 1 + x2 + x3 + x4

(1 − x)2(1 − x2)(1 − x4)2
.

This leads to Formula (6).

The diary entry shows no attempt to prove an explicit formula form4(n) which is probably
related to the amount of computation needed. Using a computer algebra package, one
easily finds the expansion

1 + x + x2 + 2x3 + x4 + 3x5 + 2x6 + x7

(1 − x)(1 − x2)(1 − x3)(1 − x4)2

= 1 + 2x + 4x2 + 8x3 + 14x4 + 24x5 + 37x6 + 56x7 + 80x8 + 115x9+
+ 155x10 + 209x11 + 272x12 + 355x13 + 447x14 + 564x15 + 694x16+
+ 857x17 + 1034x18 + 1249x19 + 1483x20 + · · ·

Hence, for n = 5 there is exactly one isomer with four primary carbons, for n = 6 there
exist two, for n = 7 already four and so forth.

Next, Hurwitz considered the question of counting isomers having a fixed number of pri-
mary carbons depending on the number of secondary carbons, however, he did not suc-
ceed. Counting the number of isomers by ordering them with respect to the number of
primary carbons and applying formulae as (2) and (6) would not lead much further. Actu-
ally, with growing κ1 the number of different categories resulting from (1) grows linearly:
the number of solutions of κ1 = κ3 + 2κ4 + 2 in non-negative integers is equal to

⌊ κ1
2

⌋
.

This follows by a similar reasoning as above. The generating function for the number of
categories F(κ1) with κ1 primary carbons is

∑
κ1≥2

F(κ1)x
κ1 = x2

(1 − x)(1 − x2)
,
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n 5

n 6

n 7

Figure 6 Isomers of CnH2n+2 with four primary carbons for n = 5, 6, 7.

and partial fraction decomposition shows

F(κ1) = κ1 + 1

2
− 3

4
+ 1

4
· (−1)κ1 =

⌊κ1

2

⌋
.

Although the number of categories grows moderately slowly, Hurwitz’s approach cannot
be successful since the number of isomers of CnH2n+2 grows exponentially, however, this
was not known when Hurwitz was writing his diary entry (although he might have guessed
it by comparison with Cayley’s theorem on the number of rooted trees).

Figure 7 From left to right: Arthur Cayley (1821–1895), Adolf Hurwitz (1859–1919) and George
Pólya (1887–1985).

3 George Pólya’s aftermath

The next character in our story is George (Győrgy) Pólya who was working at ETH Zurich
from 1914 (on the inititaive of Hurwitz) until 1940. After Hurwitz’s death in 1919 Pólya
was taking care about Hurwitz’s mathematical estate, investigating the diaries, and finally
editing Hurwitz’s collected works. However, there seems to be no direct impact of Hur-
witz’s diary entry on alkanes to Pólya’s landmark paper [19], written in German, later, in
the year of Pólya’s death, translated to English and published with additional comments by
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R.C. Read as [23]. His combinatorial enumeration of groups, graphs, and chemical com-
pounds (that is the title) has been considered as one of the most important methods in com-
binatorics. Pólya started his investigations on graph theoretical aspects related to chemical
compounds already in 1935;8 he might have been inspired by reading math courses to stu-
dents of chemistry.9 In 1937, he proved among many other and more general results that
the number of CnH2n+2 isomers is asymptotically equal to

constant × ρ−nn−5/2 with ρ = 0, 35 . . .

For small n the number of alkane isomers is well known; e.g., C32H66 has 27 711 253 769
isomers which is pretty close to the asymptotical value above (without the undetermined
constant). Pólya’s enumeration method relies on Cayley’s use of generating functions
(which, of course, is also a tool in Hurwitz’s approach) and deeper results from group
theory. In particular, Burnside’s lemma10 and the so-called cycle index play a central role.
For the latter ingredient Pólya thanks Issai Schur explicitly in [19, § 20], for mentioning a
parallel reasoning in the works of Georg Ferdinand Frobenius. In fact, the theory of char-
acters of the symmetric group, developed by Frobenius and his pupil Schur around 1900,
prepares the ground for Pólya’s powerful method; Pólya refers to Schur’s lecture notes
[26] and Frobenius’ article [10].11 Moreover, Pólya mentions several chemists, namely,
H.R. Henze & C.M. Blair for extending Cayley’s computations as well as the pair of the
chemist Arthur Constant Lunn and the mathematician James K. Senior [16] for discovering
a relation between isomers and the symmetric group.

Very likely, Pólya knew about Hurwitz’s note but was not inspired. Notice that Hurwitz is
mentioned in the preface of Pólya’s rather famous exercise book Aufgaben und Lehrsätze
der Analysis [22], jointly written with Gábor Szegő. As a matter of fact, Pólya estimated
Hurwitz very highly; in his picture book we can read: “My connection with Hurwitz was
deeper and my debt to him greater than to any other colleague” [21, p. 25].

Much of Pólya’s enumeration method was anticipated by John Howard Redfield already
in 1927. In his only mathematical article [25], published in his lifetime, Redfield followed
a similar road as Pólya a decade later but, although it appeared in a good journal, was
not noticed by the community for a long time.12 Only in the 1950s, after Redfields death,
Frank Harary rediscovered Redfields paper and made its content public.13

8see [23] for references to his first articles on this topic in 1935.
9see the obituray [2, p. 566]; for details about his life we refer to [1].

10which was already known by August-Louis Cauchy; Burnside gave in his Theory of Groups from 1897 credit
to Frobenius. See Neumann [17] for details.
11There has been a letter exchange between Pólya and Schur in the period from November 1935 until Februar
1936 on the use of methods from representation theory; these letters are listed in the new edition [27] of Schur’s
notes [26] by Stammbach. The authors are grateful to the referee for this remark.
12It should be noticed that Redfield’s exposition is with 23 pages rather short compared with 110 pages of Pólya;
nevertheless, Pólya’s paper [19] was originally published in German which was a lingua franca in the 1930s,
however, that changed drastically after World War II.
13For more information on this topic we refer to [23, p. 118–122].
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4 A final word about Hurwitz

Hurwitz’s reasoning is close to Cayley; the only new idea is the recursion formula for
isomers having exactly one tertiary carbon. About his motivation we can only speculate.14

In fact, Hurwitz had always been interested in combinatorical questions. For instance,
in articles from 1891 and 1902 he counted certain Riemann surfaces with respect to the
number of branching points. It is apparent from [13] that Hurwitz was aware of Frobenius’
theory of the group determinant and character theory for symmetric groups, e.g., [9], a
forerunner of Frobenius’ later paper [10] which is mentioned by Pólya [19].15 Hurwitz’s
diary entry contains certain terms which also appear in Frobenius’ character theory. Notice
that a permutation is said to be of type [x1, x2, . . . , xm] if it contains x1 cycles of order 1,
x2 cycles of order 2, and so on. Consequently,

1x1 + 2x2 + · · · + mxm = m

is the total number of objects that have been permutated. This is more or less a sentence
from Pólya’s landmark paper [19, p. 157], and it reminds us of expressions appearing in
Hurwitz’s notes, namely in the relations (5), (7) and (8). Thus, Hurwitz’s characterization
of the isomers associated with a special type is intimately related with permutations of the
symmetric group. However, Hurwitz did not make use of permutation groups and char-
acter theory for his counting problem of isomers; this observation has been first made by
Redfield [25] in 1927, followed by Lunn & Senior [16], and finally elaborated in great
detail by Pólya [19] around 1935/37.

Acknowledgement. The authors are grateful to the anonymous referees for their valuable
remarks and corrections.
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