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1 Introduction

Over the finite field Fq of q elements, we consider the vector space V of finite dimension
n. Of course, for V we always have the standard basis

(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, . . . , 0, 1),

so finding a basis is never a problem. Instead, we were curious about what happens when
we search for a basis for V at random. While investigating this question, we used some
unexpected and very interesting mathematics.

All finite fields having the same cardinality are isomorphic. The finite field Fq exists if
and only if q is a prime power. The symbol q will only be used to denote the cardinality
of the field Fq ; thus, q will always be a prime power. Also, we use the notation Q :=
(2, 3, 22, 5, 7, 23, 32, . . .), the sequence of prime powers.

.

Eine Basis in einem gegebenen Vektorraum zu finden ist nicht immer einfach. Im All-
gemeinen benötigt man für ein solches Unterfangen das Auswahlaxiom. Aber bereits in
endlichdimensionalen Räumen über endlichen Körpern ergeben sich interessante Fra-
gen: Wieviele Basen hat ein solcher Vektorraum? Wie gross ist die Wahrscheinlichkeit
eine Basis zu finden, wenn man eine zufällige Kollektion von Vektoren herausgreift?
Wie verhält sich diese Wahrscheinlichkeit, wenn die Dimension oder die Kardinalität
des Körpers gross wird? Bei der Beantwortung dieser Fragen spielen zahlentheoreti-
sche Erwägungen eine Rolle, aber auch der Eulersche Pentagonalzahlensatz und die
Theorie elliptischer Funktionen tauchen an überraschender Stelle auf. Der Autor der
vorliegenden Arbeit illustriert seine Ausführungen mit numerischen Daten.
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In the vector space V , we set out to find a basis at random. How effective is this method?
On average, how many trials are needed to succeed? What happens as q increases? As
n increases? How many distinct bases does V have? We answer these and other related
questions, and we provide numerical results that illustrate the method’s performance. In-
triguingly,we were led to consider and apply the Jacobi theta functions from complex anal-
ysis. Also, we discuss a couple of number-theoretic results that are related to the method’s
success-probability limit as n → ∞, for fixed q , that is, limq∈Q;n→∞ Pn,q (success).

The tabulated numerical data were obtained with Maple 18.02, setting the environment
variable Digits := 15. The output data were rounded to the number of decimal places
shown in the tables.

We collect and summarize our results in Section 6.

Although the motivating problems are different, our work intersects that of Brennan and
Wolfskill [5] and Waterhouse [10]. We mention differences and similarities as they occur.

Similar problems have been considered since long ago. For example, in 1893, Lands-
berg [9] determined the number of matrices – rectangular or square – that have a given
rank, modulo a fixed prime. About one hundred years later, Gerth [6] investigated more
general, related questions.

Among the novel and salient features of the paper, we have the following.

• In terms of just one Jacobi theta function, we provide an attainable, optimal lower
bound for the sequence

(
limn→∞ Pn,q (success)

)
q∈Q, whose limit as q → ∞ is the

said optimal lower bound.

• We discuss and present explicit expressions for the expected value and the variance
for the number of trials until, and including, the trial when a basis is obtained. We
give expressions for the limits, both when q → ∞ and when n → ∞.

• We present extensive numerical data that illustrate the behavior toward the various
limits we discuss.

• In general, our exposition is detailed. This applies, in particular, to the Jacobi theta
functions, to the connections with number theory, and to the references.

2 Success Probability

Under the discrete uniform probability law, we sample one element {v1, . . . , vn} from
the set S of n-element subsets of V . The selected subset is a basis for V if and only if
v1, . . . , vn are linearly independent, which occurs if and only if v1 �= 0 and, for each
j = 2, . . . , n, the vector v j /∈ Span

({
v1, . . . , v j−1

})
. Thus, for v1, . . . , vn to be linearly

independent, there are qn−1 choices for v1 and, for each j = 2, . . . , n, there are qn−q j−1

choices for v j . Therefore, there are

(qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1)

such linearly independent sets {v1, . . . , vn} in S; also, that is the number of distinct bases in
V . Consequently, the success probability Pn,q (success) – the probability that {v1, . . . , vn}
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is a basis for V – is

Pn,q (success) = (qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1)/qn2

= (1 − q−1)(1 − q−2) · · · (1 − q−n).

The preceding argument is essentially the same as that given in [10] to determine the
probability that the determinant of a random n × n matrix over Fq is not zero. We present
the argument here for completeness.

3 Success Probability as q → ∞
For fixed n, it is reasonable to think that, for q ∈ Q and as q → ∞, linear dependencies
should be less and less likely in a random set of n vectors, and, therefore, the success
probability should increase. Indeed, for a fixed integer n > 0, and for each positive integer
r , let

αr (n) := (1 − r−1)(1 − r−2) · · · (1 − r−n).

Then, as r → ∞, the sequence (αr (n))∞r=1 converges because it is strictly monotone
increasing and bounded above by one. In fact, limr→∞ αr (n) = 1. Therefore, the subse-
quence Q has the same limit; that is,

lim
q∈Q;q→∞

Pn,q (success) = lim
q∈Q;q→∞

(1 − q−1)(1 − q−2) · · · (1 − q−n) = 1.

For fixed n, and as q → ∞, the data in Tables 1 through 3 illustrate how Pn,q(success)
increases to its limit value of 1. For example, when n = 10, already Pn,q (success | q =
26) ≈ 0.98, and then Pn,q (success | q = 56) ≈ 0.999936.

Table 1: The success probability
∏n

k=1(1 − q−k) when q = 2, 23, and 26, for increasing values of n

n q = 2 q = 23 q = 26

10 0.289070298 0.859405995 0.984130860

100 0.288788095 0.859405994 0.984130860

500 0.288788095 0.859405994 0.984130860

∞ (limit value) 0.288787934 0.859405994 0.984130860

Table 2: The success probability
∏n

k=1(1 − q−k) when q = 3, 33, and 36, for increasing values of n

n q = 3 q = 33 q = 36

10 0.560130821 0.961591291 0.998626376

100 0.560126078 0.961591291 0.998626376

500 0.560126078 0.961591291 0.998626376

∞ (limit value) 0.560126078 0.961591291 0.998626376
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Table 3: The success probability
∏n

k=1(1 − q−k) when q = 5, 53, and 56, for increasing values of n

n q = 5 q = 53 q = 56

10 0.760332815 0.991936000 0.999935996

100 0.760332796 0.991936000 0.999935996

500 0.760332796 0.991936000 0.999935996

∞ (limit value) 0.760332796 0.991936000 0.999935996

4 Success Probability as n → ∞
Intuitively, for fixed q ∈ Q and as n → ∞, linear dependencies should be more and more
likely in a random set of n vectors, and, therefore, the success probability should decrease.
Indeed, for a fixed integer r > 1, and for each positive integer n, let

βn(r) := (1 − r−1)(1 − r−2) · · · (1 − r−n).

Then, as n → ∞, the sequence (βn(r))∞n=1 converges because it is strictly monotone
decreasing and bounded below by zero. Thus, for each q ∈ Q,

lim
q∈Q;n→∞

Pn,q(success) = lim
q∈Q;n→∞

(1 − q−1)(1 − q−2) · · · (1 − q−n) (1)

exists, but it is not equal to zero, as one might be tempted to think; in fact, that limit value
is always greater than 0.2887, as shown in Section 4.2. The limit in (1) can be determined
through old, venerable functions that we discuss next.

4.1 The Jacobi theta functions

Part of elliptic-function theory, the four Jacobi theta functions ϑ1, ϑ2, ϑ3, and ϑ4 are func-
tions of a complex variable z, and they also depend on a constant parameter s. Instead of
s, the usual notation for the parameter is q; however, we have already reserved q for the
cardinality of a finite field.

Let the variable z ∈ C, and let the constant parameter s := eπ iτ , where the imaginary
part Im(τ ) > 0, so that |s| < 1. The definitions ([8, p. 156] and [11, pp. 463–464]) are as
follows:

ϑ1(z, s) := 2
∞∑

k=0

(−1)ks
1
4 (2k+1)2 sin{(2k + 1)z},

ϑ2(z, s) := 2
∞∑

k=0

s
1
4 (2k+1)2 cos{(2k + 1)z},

ϑ3(z, s) := 1 + 2
∞∑

k=1

sk2
cos(2kz),
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and

ϑ4(z, s) := 1 + 2
∞∑

k=1

(−1)ksk2
cos(2kz).

All of these series converge very fast [8, p. 157]; this is illustrated by our tabulated numer-
ical data. For a fixed constant s, the four Jacobi theta functions are entire functions of z.

The notation ϑ is sometimes used for ϑ4 [11, pp. 463–464].

It is clear that ϑ1(0, s) = 0. When z = 0, and the value of the constant parameter s is
understood, it is customary to omit the arguments, and simply write

ϑ j (0, s) =: ϑ j for j = 2, 3, 4, and

ϑ ′
1(0, s) =: ϑ ′

1

for the derivative of ϑ1(z, s) with respect to z, at z = 0.

When z = 0, the four theta functions are related by the following equation ([8, p. 166]
and [11, p. 470]):

ϑ ′
1(0, s) = ϑ2(0, s)ϑ3(0, s)ϑ4(0, s). (2)

The Jacobi theta functions have product representations, as follows ([8, p. 163] and [11,
Sections 21.3 and 21.42, pp. 469–470, 472–473]):

ϑ1(z, s) = 2

{ ∞∏
k=1

(1 − s2k)

}
s

1
4 sin(z)

∞∏
k=1

{1 − 2s2k cos(2z)+ s4k},

ϑ2(z, s) = 2

{ ∞∏
k=1

(1 − s2k)

}
s

1
4 cos(z)

∞∏
k=1

{1 + 2s2k cos(2z)+ s4k},

ϑ3(z, s) =
{ ∞∏

k=1

(1 − s2k)

} ∞∏
k=1

{1 + 2s2k−1 cos(2z)+ s4k−2}, and

ϑ4(z, s) =
{ ∞∏

k=1

(1 − s2k)

} ∞∏
k=1

{1 − 2s2k−1 cos(2z)+ s4k−2}.

(3)

Each of the product representations in (3) contains
∏∞

k=1(1−s2k) as a factor; this suggests
that these theta functions may be used to determine the limit

∏∞
k=1

(
1 − q−k

)
that we are

interested in.

4.2 The value of limq∈Q;n→∞(1 − q−1)(1 − q−2) · · · (1 − q−n)

Our departure point is the fact that ([8, Equation (13.5.32), p. 165] and [11, pp. 472–473])

ϑ ′
1(0, s) = 2s

1
4

{ ∞∏
k=1

(1 − s2k)

}{ ∞∏
k=1

(1 − s2k)2

}
= 2s

1
4

{ ∞∏
k=1

(1 − s2k)

}3

, (4)
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since the products converge absolutely. In (4) we replace s by q−1/2, and then

ϑ ′
1(0, q

−1/2) = 2
(
q−1/2

) 1
4

[ ∞∏
k=1

{
1 −

(
q−1/2

)2k
}]3

= 2q−1/8

{ ∞∏
k=1

(
1 − q−k

)}3

.

Therefore, we can now obtain the value of the desired limit:

∞∏
k=1

(
1 − q−k

)
=

{
1

2
q1/8ϑ ′

1

(
0, q−1/2

)}1/3

= q
1
24

{
1

2
ϑ ′

1

(
0, q−1/2

)}1/3

, (5)

simpler than the expression given in [5, Theorem 4, p. 313], which involves three of the
theta functions. Another, more complicated, expression for the desired limit follows by
applying the result in Equations (2) to (5). Doing so, we find

∞∏
k=1

(
1 − q−k

)
= q

1
24

{
1

2
ϑ2

(
0, q−1/2

)
ϑ3

(
0, q−1/2

)
ϑ4

(
0, q−1/2

)}1/3

,

which, however, does not appear to be the same as that given in [5, Theorem 4, p. 313],
taking into account that, as we have mentioned earlier, sometimes the notation ϑ is used
for ϑ4. Nevertheless, our numerical data agree with the corresponding data in [5], always
to at least five decimal places.

For fixed q ∈ Q, and as n → ∞, the data in Tables 1 through 3 illustrate the manner
in which Pn,q (success) decreases to its limit value. For example, when q = 2, already
Pn,q (success | n = 10) ≈ 0.289070, and, in this case, the limit value limq∈Q;n→∞ Pn,q

(success) ≈ 0.28878793.For larger values of q , we see in these tables that the convergence
is faster.

4.3 Attainable, optimal lower bound for the sequence(
limn→∞

∏n
k=1

(
1 − q−k))

q∈Q

Brennan and Wolfskill [5, Theorem 2, p. 312] state that, for q ∈ Q,

lim
n→∞

n∏
k=1

(1 − q−k) ≥ 2

9
.

Following a referee’s question, we present an outline of Brennan and Wolfskill’s argument.
Let q ∈ Q. They begin by showing that

∞∏
k=1

(1 − q−k) ≥ q − 2

q − 1
.

This is achieved by first using induction on n to obtain the inequality

n∏
k=1

(1 − q−k) ≥ 1 −
n∑

k=1

q−k,
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and then taking limits as n → ∞ and summing the geometric series
∑∞

k=1 q−k . They then
state that

∞∏
k=1

(1 − q−k) ≥ (1 − q−1)

∞∏
k=1

(1 − q2k)2 = (1 − q−1)

[ ∞∏
k=1

{
1 −

(
q2

)−k
}]2

. (6)

Finally, the conclusion is obtained by using the previous lower bound (q − 2)/(q − 1)
and the fact that the sequence

(
limn→∞

∏n
k=1

(
1 − q−k

))
q∈Q is monotonically increasing.

Thus, when q := 2, from (6),

∞∏
k=1

(1 − 2−k) ≥ 1

2

{ ∞∏
k=1

(
1 − 4−k

)}2

≥ 1

2

(
2

3

)2

= 2

9
.

The lower bound 2/9 can be improved to produce an attainable, optimal lower bound in
terms of just one Jacobi theta function, as follows.

We have seen that, for a fixed positive integer n, and for each positive integer r , if

αr (n) := (1 − r−1)(1 − r−2) · · · (1 − r−n),

then the sequence (αr (n))∞r=1 is strictly monotone increasing. Thus, for a fixed positive
integer n, and for each integer r > 2,

(1 − 2−1)(1 − 2−2) · · · (1 − 2−n) < (1 − r−1)(1 − r−2) · · · (1 − r−n). (7)

We have also seen that, for a fixed q ∈ Q, and for each positive integer n, from (5),

lim
q∈Q;n→∞

(1 − q−1)(1 − q−2) · · · (1 − q−n) = q
1
24

{
1

2
ϑ ′

1

(
0, q−1/2

)}1/3

. (8)

Therefore, from (7) and (8), we have, for each q ∈ Q,

lim
n→∞(1 − 2−1)(1 − 2−2) · · · (1 − 2−n) ≤ lim

q∈Q;n→∞
(1 − q−1)(1 − q−2) · · · (1 − q−n)

and, from Table 1,

0.2887 < 2
1
24

{
1

2
ϑ ′

1

(
0, 2−1/2

)}1/3

≤ q
1
24

{
1

2
ϑ ′

1

(
0, q−1/2

)}1/3

. (9)

In (9), the lower bound

2
1
24

{
1

2
ϑ ′

1

(
0, 2−1/2

)}1/3

is best possible for the sequence(
lim

n→∞

n∏
k=1

(
1 − q−k

))
q∈Q

,

and it is attained if and only if q = 2.
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4.4 Connections with number theory

The infinite product
∏∞

n=1

(
1 − q−n

) = limq∈Q;n→∞ Pn,q (success) is connected to num-
ber theory, via the pentagonal numbers and the partition function. These connections lead
to additional expressions – infinite power series – for the product

∏∞
n=1

(
1 − q−n

)
. Con-

vergence of these series is not necessarily an issue in number theory, where such series
are often treated as formal expressions. However, we are interested in the limit values, and
that is why we have stated convergence conditions on x in the theorems in this section.

The first connection ([2, Theorem 14–4, pp. 176–177], [3, Theorem 14.3, p. 312], and [4,
Theorem 1.2, p. 139]) goes back to Euler.

Theorem 1 (Euler’s pentagonal-number theorem). To ensure convergence, we let x be
a complex variable with |x | < 1. Then

∞∏
k=1

(
1 − xk

)
= 1 − x − x2 + x5 + x7 − x12 − x15 + · · ·

= 1 +
∞∑

k=1

(−1)k
{
x (3k2−k)/2 + x (3k2+k)/2

}
=

∞∑
k=−∞

(−1)kx (3k2−k)/2. �

Substituting q−1 for x in Euler’s pentagonal-number theorem, we have, for each q ∈ Q,

lim
q∈Q;n→∞

Pn,q (success) =
∞∏

n=1

(
1 − q−n)

= 1 − q−1 − q−2 + q−5 + q−7 − q−12 − q−15 + · · ·

= 1 +
∞∑

k=1

(−1)k
{
q−(3k2−k)/2 + q−(3k2+k)/2

}

=
∞∑

k=−∞
(−1)kq−(3k2−k)/2.

Euler’s theorem is called pentagonal because the (generalized) pentagonal numbers
(k (3k ± 1) /2)∞k=1 are related to pentagonal arrangements of points on the plane; see,
e.g., [1, p. 16] and [7, p. 224].

For the second connection, we recall that a partition of a positive integer k is a multiset of
positive integers whose sum is equal to k. The value p(k) of the partition function p(·) is
the number of distinct partitions of k. It is convenient to set p(0) := 1. The next result is
well known; see, for example, [3, Theorem 14.2, p. 308], [4, Corollary 1, p. 139], and [7,
p. 223].

Theorem 2 (Generating function for partitions). To ensure convergence, we let x be a
complex variable with |x | < 1. Then the generating function F for partitions

F(x) =
∞∑

k=0

p(k)xk =
∞∏

k=1

1

1 − xk
= 1

(1 − x)(1 − x2)(1 − x3) · · · . �
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We can now relate limq∈Q;n→∞ Pn,q (success) to partitions, as follows. Substituting q−1

for x in Theorem 2, it follows that

lim
q∈Q;n→∞

Pn,q (success) =
∞∏

n=1

(
1 − q−n) = 1

/ ∞∑
k=0

p(k)q−k .

Brennan and Wolfskill [5] and Waterhouse [10] use Euler’s pentagonal-number theorem
to express

∏∞
n=1

(
1 − q−n

)
as an infinite series. Waterhouse [10] mentions partitions, but

does not say what the limit value of
∏∞

n=1

(
1 − q−n

)
is actually equal to.

The referee noted that Euler’s pentagonal-number theorem is used to prove the Jacobi
triple-product identity and asked whether that theorem is used to prove (2). In their discus-
sion of Jacobi theta functions, the references [8, 11] do not mention Euler’s pentagonal-
number theorem or the Jacobi triple-product identity. The pentagonal-number theorem is
itself a special case of the triple-product identity [7, p. 226]. Next, for completeness, we
state two forms of the triple-product identity [4, Problem 28, p. 195] and [7, Theorem 8,
p. 226].

Theorem 3 (Jacobi triple-product identity). If x and y are complex numbers such that
|x | < 1 and y �= 0, then

• ∏∞
k=1(1 − x2k)(1 + x2k−1y)(1 + x2k−1y−1) = ∑∞

k=−∞ xk2
yk and

• ∏∞
k=1(1 − x2k)(1 − x2k−1y2)(1 − x2k−1y−2) = ∑∞

k=−∞(−1)kxk2
y2k. �

One form of the Jacobi theta function ϑ4(z, s) lends itself well to the application of the
triple-product identity. Let |s| < 1. The Jacobi theta function ϑ4(z, s) can be written [11,
p. 463]

ϑ4(z, s) =
∞∑

k=−∞
(−1)ksk2

e2kiz . (10)

Thus, it is clear that, by taking x := s and y := eiz , we can apply the second form of the
Jacobi triple-product identity in Theorem 3 to the series in (10) to obtain

ϑ4(z, s) =
∞∏

k=1

(1 − s2k)(1 − s2k−1e2iz)(1 − s2k−1e−2iz). (11)

Moreover, using Euler’s formula eiw = cos(w)+ i sin(w) and basic trigonometric identi-
ties, it is straightforward to show that

(1 − s2k−1e2iz)(1 − s2k−1e−2iz) = 1 − 2s2k−1 cos(2z)+ s4k−2,

and so (11) becomes

ϑ4(z, s) =
∞∏

k=1

(1 − s2k)(1 − 2s2k−1 cos(2z)+ s4k−2),

the expression given earlier in (3) for ϑ4(z, s). Thus, we see a connection between the
tools we use and the Jacobi triple-product identity.
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5 How Many Trials?

Under the discrete uniform probability law, and drawing one item at a time, we sample with
replacement from S until we obtain a basis for V . If T is the number of samples taken until,
and including, the trial when we obtain a basis, then T is a geometric random variable with
support {1, 2, 3, . . .} and parameter – the constant success probability – equal to

(1 − q−1)(1 − q−2) · · · (1 − q−n) =: ψn,q .

The probability law for T is

P(T = t) = ψn,q(1 − ψn,q)
t−1, t = 1, 2, 3, . . . ;

the expected value E[T ] = 1/ψn,q ; and the variance Var[T ] = (1−ψn,q)/ψ
2
n,q . For fixed

n and q , small values simultaneously for both E[T ] and Var[T ] suggest that a basis is
likely to be found after just a few trials.

5.1 Expected value and variance as q → ∞
From Sections 3 and 5, it is clear that, for fixed n,

lim
q∈Q;q→∞

E[T ] = 1 and lim
q∈Q;q→∞

Var[T ] = 0.

These limit values make sense. Intuitively, for fixed n, and as q → ∞, dependencies
between vectors should be less and less likely, so for large q we would expect to draw a
basis very quickly. The data in Tables 4 through 6 support this conclusion.

Table 4: Cumulative probability of obtaining a basis on or before the tth trial, and the expected value E[T ],
for q = 2, 23, and 26, and some values of n

q = 2 q = 23 q = 26

t n = 2 n = 4 n = 10 n = 2 n = 4 n = 10 n = 2 n = 4 n = 10

1 0.3750 0.3076 0.2891 0.8613 0.8594 0.8594 0.9841 0.9841 0.9841
2 0.6094 0.5206 0.4946 0.9808 0.9802 0.9802 0.9997 0.9997 0.9997
3 0.7559 0.6681 0.6407 0.9973 0.9972 0.9972 1.0000 1.0000 1.0000
4 0.8474 0.7702 0.7445 0.9996 0.9996 0.9996 1.0000 1.0000 1.0000
5 0.9046 0.8409 0.8184 0.9999 0.9999 0.9999 1.0000 1.0000 1.0000
6 0.9404 0.8898 0.8709 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
7 0.9627 0.9237 0.9082 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
8 0.9767 0.9472 0.9347 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
9 0.9854 0.9634 0.9536 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 0.9909 0.9747 0.9670 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

E[T ] 2.67 3.25 3.46 1.16 1.16 1.16 1.02 1.02 1.02

For fixed n, and as q → ∞, the data in Tables 7 through 9 illustrate the manner in which
E[T ] and Var[T ] approach their limit values. For example, when n = 10, E[T | q = 2] ≈
3.46 and E[T | q = 5] ≈ 1.32, and Var[T | q = 2] ≈ 8.51 and Var[T | q = 5] ≈ 0.42.
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Table 5: Cumulative probability of obtaining a basis on or before the tth trial, and the expected value E[T ],
for q = 3, 33, and 36, and some values of n

q = 3 q = 33 q = 36

t n = 2 n = 4 n = 10 n = 2 n = 4 n = 10 n = 2 n = 4 n = 10

1 0.5926 0.5636 0.5601 0.9616 0.9616 0.9616 0.9986 0.9986 0.9986
2 0.8340 0.8096 0.8065 0.9985 0.9985 0.9985 1.0000 1.0000 1.0000
3 0.9324 0.9169 0.9149 0.9999 0.9999 0.9999 1.0000 1.0000 1.0000
4 0.9725 0.9637 0.9626 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
5 0.9888 0.9842 0.9835 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
6 0.9954 0.9931 0.9928 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
7 0.9981 0.9970 0.9968 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
8 0.9992 0.9987 0.9986 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
9 0.9997 0.9994 0.9994 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 0.9999 0.9997 0.9997 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

E[T ] 1.69 1.77 1.79 1.04 1.04 1.04 1.00 1.00 1.00

Table 6: Cumulative probability of obtaining a basis on or before the tth trial, and the expected value E[T ],
for q = 5, 53, and 56, and some values of n

q = 5 q = 53 q = 56

t n = 2 n = 4 n = 10 n = 2 n = 4 n = 10 n = 2 n = 4 n = 10

1 0.7680 0.7606 0.7603 0.9919 0.9919 0.9919 0.9999 0.9999 0.9999
2 0.9462 0.9427 0.9426 0.9999 0.9999 0.9999 1.0000 1.0000 1.0000
3 0.9875 0.9863 0.9862 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
4 0.9971 0.9967 0.9967 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
5 0.9993 0.9992 0.9992 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
6 0.9998 0.9998 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

E[T ] 1.30 1.31 1.32 1.01 1.01 1.01 1.00 1.00 1.00

5.2 Expected value and variance as n → ∞
From Sections 4.2, 4.4, and 5, it is clear that, for fixed q ∈ Q,

lim
q∈Q;n→∞

E[T ] = q−1/24
{

1

2
ϑ

′
1

(
0, q−1/2

)}−1/3

= 1

/ ∞∑
k=−∞

(−1)kq−(3k2−k)/2

=
∞∑

k=0

p(k)q−k,

and

lim
q∈Q;n→∞

Var[T ] =
[
q1/24

{
1

2
ϑ

′
1

(
0, q−1/2

)}1/3
]−2

−
[
q1/24

{
1

2
ϑ

′
1

(
0, q−1/2

)}1/3
]−1
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=
[ ∞∑

k=−∞
(−1)kq−(3k2−k)/2

]−2

−
[ ∞∑

k=−∞
(−1)kq−(3k2−k)/2

]−1

=
[ ∞∑

k=0

p(k)q−k − 1

][ ∞∑
k=0

p(k)q−k

]
.

For fixed q ∈ Q, and as n → ∞, the data in Tables 7 through 9 show that for all tabulated
values of q , both E[T ] and Var[T ] already achieve their rounded limit values when n = 10.

Table 7: Expected value E[T ] and variance Var[T ] when q = 2, 23, and 26, for increasing values of n

q = 2 q = 23 q = 26

n E[T ] Var[T ] E[T ] Var[T ] E[T ] Var[T ]
10 3.46 8.51 1.16 0.19 1.02 0.02

100 3.46 8.53 1.16 0.19 1.02 0.02
500 3.46 8.53 1.16 0.19 1.02 0.02

∞ (limit value) 3.46 8.53 1.16 0.19 1.02 0.02

Table 8: Expected value E[T ] and variance Var[T ] when q = 3, 33, and 36, for increasing values of n

q = 3 q = 33 q = 36

n E[T ] Var[T ] E[T ] Var[T ] E[T ] Var[T ]
10 1.79 1.402 1.04 0.042 1.00 0.001

100 1.79 1.402 1.04 0.042 1.00 0.001
500 1.79 1.402 1.04 0.042 1.00 0.001

∞ (limit value) 1.79 1.402 1.04 0.042 1.00 0.001

Table 9: Expected value E[T ] and variance Var[T ] when q = 5, 53, and 56, for increasing values of n

q = 5 q = 53 q = 56

n E[T ] Var[T ] E[T ] Var[T ] E[T ] Var[T ]
10 1.32 0.415 1.01 0.008 1.00 0.00006

100 1.32 0.415 1.01 0.008 1.00 0.00006
500 1.32 0.415 1.01 0.008 1.00 0.00006

∞ (limit value) 1.32 0.415 1.01 0.008 1.00 0.00006

6 Summary and Conclusion

Next, we collect and summarize our results.

Theorem 4. Let Q := (2, 3, 22, 5, 7, 23, 32, . . .), the sequence of prime powers, and let
q ∈ Q. Over the finite field Fq of q elements, let V be a vector space of finite dimension n.
Let S be the set of n-element subsets of V . Under the discrete uniform probability law, and
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drawing one item at a time, we sample with replacement from S until we obtain a basis for
V . Let Pn,q (success) denote the success probability. Then the following conclusions are
valid.

• There are (qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1) distinct bases in V .

• For each individual draw, the probability of obtaining a basis is equal to
Pn,q(success) = (1 − q−1)(1 − q−2) · · · (1 − q−n).

– For fixed n,
lim

q∈Q;q→∞
Pn,q(success) = lim

q∈Q;q→∞
(1 − q−1)(1 − q−2) · · · (1 − q−n) = 1.

– For fixed q ∈ Q,

lim
q∈Q;n→∞

Pn,q(success) = lim
q∈Q;n→∞

(1 − q−1)(1 − q−2) · · · (1 − q−n)

= q
1
24

{
1

2
ϑ

′
1

(
0, q−1/2

)}1/3

= q
1
24

{
1

2
ϑ2

(
0, q−1/2

)
ϑ3

(
0, q−1/2

)
ϑ4

(
0, q−1/2

)}1/3

,

where ϑ1, ϑ2, ϑ3, and ϑ4 are the Jacobi theta functions.

– The sequence

(
lim

n→∞ Pn,q (success)
)

q∈Q
=

(
lim

n→∞

n∏
k=1

(
1 − q−k

))
q∈Q

is monotonically increasing. For each q ∈ Q,

0.2887 < 2
1
24

{
1

2
ϑ ′

1

(
0, 2−1/2

)}1/3

≤ q
1
24

{
1

2
ϑ ′

1

(
0, q−1/2

)}1/3

.

Best possible for the sequence

(
lim

n→∞ Pn,q (success)
)

q∈Q
=

(
lim

n→∞

n∏
k=1

(
1 − q−k

))
q∈Q

,

the lower bound

2
1
24

{
1

2
ϑ ′

1

(
0, 2−1/2

)}1/3

is attained if and only if q = 2.

• Let the random variable T be the number of trials – samples drawn – until, and
including, the trial when we obtain a basis. Set

(1 − q−1)(1 − q−2) · · · (1 − q−n) =: ψn,q .

Then T is a geometric random variable with probability law P(T = t) = ψn,q (1 −
ψn,q)

t−1, t = 1, 2, 3, . . .; expected value E[T ] = 1/ψn,q; and variance Var[T ] =
(1 − ψn,q )/ψ

2
n,q .
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– For fixed n, limq∈Q;q→∞ E[T ] = 1 and limq∈Q;q→∞ Var[T ] = 0.

– For fixed q ∈ Q,

lim
q∈Q;n→∞

E[T ] = q−1/24
{

1

2
ϑ

′
1

(
0, q−1/2

)}−1/3

= 1

/ ∞∑
k=−∞

(−1)kq−(3k2−k)/2

=
∞∑

k=0

p(k)q−k,

and

lim
q∈Q;n→∞

Var[T ] =
[
q1/24

{
1

2
ϑ

′
1

(
0, q−1/2

)}1/3
]−2

−
[
q1/24

{
1

2
ϑ

′
1

(
0, q−1/2

)}1/3
]−1

=
[ ∞∑

k=−∞
(−1)kq−(3k2−k)/2

]−2

−
[ ∞∑

k=−∞
(−1)kq−(3k2−k)/2

]−1

=
[ ∞∑

k=0

p(k)q−k − 1

][ ∞∑
k=0

p(k)q−k

]
,

where p(·) is the number-theoretic partition function. �

Of course, the preceding results can also be stated in terms of linear independence, rank,
and other concepts related to a basis in linear algebra.

Our work shows that, in a finite-dimensional vector space over a finite field, finding bases
at random is an efficient procedure, as we are likely to come up with a basis after just a
few trials.
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