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1 Introduction

Consider a right angle to be divided into n equal parts. Approximately 1586, Jost Bürgi
found an elegant algorithm, referred to as Artificium, for efficiently calculating the sines of
all subdividing angles, which he documented in Fundamentum Astronomiæ, [7]. Bürgi’s
Artificium algorithm and the resulting table were considered as lost, but both documents
had been rediscovered 2013 in the University Library of Wroclaw (Poland) by Menso
Folkerts [4], [5], [6]. More recent texts are [10], [11].

.

In den Jahren 1586 bis 1592 erfand der Schweizer Instrumentenbauer und Mathema-
tiker Jost Bürgi einen genialen Algorithmus zur effizienten und präzisen Berechnung
von Sinus-Tabellen. Das Manuskript Fundamentum Astronomiæ enthielt Bürgis Ta-
bellen sowie die Erklärung des Algorithmus. Das Werk galt jedoch als verschollen,
bis ein Exemplar 2013 vom deutschen Mathematikhistoriker Menso Folkerts in der
Universitätsbibliothek in Breslau (Polen) wiederentdeckt wurde. In der vorliegenden
Arbeit diskutiert der Autor Bürgis Algorithmus, den Kunstweg (Artificium), mit den
Werkzeugen und in der Sprache der modernen Linearen Algebra. Durch Betrachtung
der Differenzentabelle der Sinus-Funktion und von Eigenwerten geeigneter Matrizen
erstrahlt Bürgis Algorithmus in neuem Licht. Insbesondere wird seine Konvergenzge-
schwindigkeit bestimmt.
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Figure 1 Bürgi’s example n = 9 from Fundamentum Astronomiæ, numbers in the hexagesimal system.
c© University Library Wroclaw, Sig. IV Q 38a, fol. 36r

2 The Artificium algorithm: Introductory example

Jost Bürgi’s Artificium simultaneously finds all sine values

sin

(
k π

2

n

)
, k = 1, . . . , n, n ∈ N, n > 1 (1)

by a convergent algorithm that can be pushed to any desired accuracy.

In Fundamentum Astronomiæ, [7], Bürgi uses the example n = 9 where, according to the
customs of the 16th century, quantities used in astronomy are represented in the hexagesi-
mal number system (Fig. 1). For finding the “sines of all degrees of the right angle” Bürgi
suggests n = 90.

As an introductory example we will use the simpler case

n = 3 : sin(30◦) = 1

2
, sin(60◦) =

√
3

2
, sin(90◦) = 1 . (2)

Bürgi’s algorithm generates a table (see Table 1), beginning with the rightmost column a
and working from right to left. The numbers printed in italics are not carried along.

We briefly describe the algorithm by the following three steps. Step 0 below defines the
initial column a; Steps 1 and 2 generate columns b and c to the left, and their repetition
generates columns d and e, etc. The symbol ( )′ means transposition of a vector or a matrix.
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sin(0◦) 0 0 0 0 0 0
2911 780 209 56 15

sin(30◦) 2911 780 209 56 15 4
2131 571 153 41 11

sin(60◦) 5042 1351 362 97 26 7
780 209 56 15 4

sin(90◦) 5822 1560 418 112 30 8−780 −209 −56 −15 -4

. . . f e d c b a

Table 1

0. Initial column: a = (a1, a2, . . . , an)
′ ∈ R

n , (almost) arbitrary, for example, but not
necessarily, approximations of multiples of sine values, f ·sin(k π

2 /n), k = 1, . . . , n,
rounded to integers. f �= 0 is an arbitrary factor, e.g., f = 8 in the introductory
example.

1. Next column to the left: b = (b1, b2, . . . , bn)
′ = cumulative sum of the a j from bottom

to top, first bn = an/2, then bk = bk+1 + ak , k = n − 1, . . . , 1.

2. Further column to the left: c = (c1, c2, . . . , cn)
′ = cumulative sum of the bk from top

to bottom, first c1 = b1, then ck = ck−1 + bk , k = 2, . . . , n.

Clearly, as a consequence of the use of cumulative sums, the complete Artificium table
is the difference table of the leftmost column, with a sign change in columns 3,5,. . . . For
discussing the details of the algorithm we will therefore look at the difference table of the
sine function in Section 3.

Since the initial column a is close to a multiple of sin(k π/6) and we need to get
sin(π/2) = 1, it seems natural to normalize the leftmost column by dividing it by its
bottom element, with the result (0, 0.5, 0.86602542, 1)′. This is in fact the final step in the
Artificium algorithm.

For our choice of the initial column in the case n = 3 the approximations for the first ele-
ment, sin(π/6) happen to be exact. The normalized second elements of the odd columns,
a2/a3, c2/c3, e2/e3, . . . approximate sin(2 π/6) with increasing accuracy. In the table be-
low, the three lines list (1) the normalized second elements in rational form, (2) the errors,
i.e., the differences to sin(π/3) = √

3/2 = 0.86602540 and (3) the ratios of two consecu-
tive errors.

The errors are nearly in a geometric sequence with an almost constant ratio of consecutive
terms. In Section 7 the limit of the ratios (the convergence quotient) will be identified as(
2 + √

3
)2 = 13.92820.

. . . , c2/c3, a2/a3 1351/1560 362/418 97/112 26/30 7/8
. . . , a2/a3 − √

3/2 2.3724e-7 3.3043e-6 4.6025e-5 6.4126e-4 8.9746e-3
Ratio to next error 13.92823 13.92855 13.93299 13.99526



92 J. Waldvogel

3 The difference table of the sine function

At the end of the 16th century trigonometry was still in the process of being developed.
The trigonometric addition formulas were used in order to simplify multiplications of long
numbers. This process, known as Prosthaphæresis, is partially attributed to Bürgi, and was
also used by him around 1590, [8]. It is based on the identity

cos(α) · cos(β) = 1

2

(
cos(α + β) + cos(α − β)

)
(3)

and allows to calculate a product by table-look-ups and simple operations (additions and a
halving).

At the beginning of the next century Bürgi found a simpler and more effective method for
simplifying multiplications: his famous Progreß Tabulen [1], [2], [3], a table of the expo-
nential function fn = 1.0001n, n = 0, . . . , 23027, published 1620 in Prague. Together
with John Napier, who independently published his table of the log-sine function in 1614,
Bürgi laid the grounds for logarithmic calculation which remained the basis of all scientific
computations for more than three centuries, see also [12].

In the following, we will use the tools of modern mathematics for explaining and dis-
cussing the Artificium algorithm. By putting α = (

π − (y − x)
)
/2, β = (y + x)/2 we

obtain

sin y − sin x = 2 sin
( y − x

2

)
cos

( y + x

2

)
, (4)

an identity useful for investigating the difference table of the sine function f (x) = sin x
(Fig. 2). Using three arguments and 2 δ > 0 as their mutual difference we obtain the dif-
ference table with first and second differences �1 and �2:

f (x) �1 �2

sin(x − 2 δ)
2 sin δ · cos(x − δ)

sin x −4 sin2 δ · sin x
2 sin δ · cos(x + δ)

sin(x + 2 δ)

(5)

There immediately follows: The second difference is proportional (with a negative factor)
to the value of the sine function on the same line. Bürgi might have observed this theoreti-
cally and experimentally as well, perhaps with equidistant angles in more than three rows
and numerical sine approximations.

The inverse operation of calculating the difference table is forming the cumulative sums
from right to left, from bottom to top in the odd columns to compensate the omission of
the negative sign of �2 in Equ. (5). Since calculating differences of almost equal numbers
results in a loss of accuracy (is numerically unstable), Bürgi could have hoped that the
inverse process would result in a stable and convergent algorithm.

The initial conditions for the cumulative sums take care of the symmetries of the sine and
cosine functions at x = 0 and x = 90◦, see the entries of the introductory example printed
in italics. The columns at their boundaries behave like odd functions, the odd columns
a, c, . . . at x = 0, the even columns b,d, . . . at x = 90◦. This results in the rules of Step 2
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dashed: first derivative = cos(x),   dashdot: second derivative = −sin(x)

Figure 2 The function y = f (x) = sin(x), dashed: first derivative f ′(x) = cos(x).
dashdot: 2nd derivative f ′′(x) = − sin(x)

and 1: For the odd columns the initial value on top is always 0 (not carried along), for the
even column b we would have to define bn+1 = −bn , which implies bn = an/2, taking
into account that column a is the negative difference of column b.

Obviously, the Artificium algorithm finds the sine values only up to an (unknown) factor.
To satisfy sin(90◦) = 1 every element of the leftmost column needs to be normalized by
dividing it by its bottom element. This is summarized in Theorem1 below. In the remaining
sections a proof will be given in several steps.

Theorem 1. For (almost) arbitrary initial columns a = (a1, . . . , an)
′ with n > 1, the

normalized odd columns ak/an, ck/cn, ek/en, . . . converge to sin(k π/2
n ), k = 1, . . . , n.

�

4 Vectors and matrices

We will use modern Linear Algebra in order to prove Theorem 1. First, the Artificium
algorithm will be described in terms of vectors and matrices. Beginning with the column
vector a = (a1, a2, . . . , an)

′ ∈ R
n , we also introduce the vector

ã =
(
a1, a2, . . . , an−1,

an

2

)′ = H · a , (6)

where H ∈ R
n×n is the diagonal matrix with diagonal elements 1, 1, . . . , 1, 1

2 . Further-
more, let T be the lower triangular matrix T = (

tkj
) ∈ R

n×n , filled with ones, tkj = 1 if
k ≥ j , tkj = 0 otherwise. Then the columns b, c of the Artificium table may be written as

b = T′ ã, c = T b . (7)

Therefore, the combined Steps 1 and 2 of the Artificium algorithm are

c = M a with M = T · T′ · H ; (8)
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M will be called the Bürgi matrix, it had already been mentioned by Folkerts, Launert,
and Thom [5]. E.g., for n = 5 Equ. (8) yields

M =

⎛
⎜⎜⎜⎜⎝

1 1 1 1 0.5
1 2 2 2 1
1 2 3 3 1.5
1 2 3 4 2
1 2 3 4 2.5

⎞
⎟⎟⎟⎟⎠ ∈ R

5×5. (9)

The matrix T has a simple inverse: by introducing the unit matrix I ∈ R
n×n and the unit

subdiagonal matrix L ∈ R
n×n , T may be written as a Taylor series,

T = I + L + L2 + · · · + Ln−1 = (I − L)−1. (10)

Therefore, also M has a simple inverse; Equ. (8) yields

M−1 = H−1 (I − L)′ (I − L) (11)

for the inverse of the Bürgi matrix, e.g., for n = 5:

M−1 =

⎛
⎜⎜⎜⎜⎝

2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−2 2

⎞
⎟⎟⎟⎟⎠ . (12)

In summary, the mapping induced by M−1,

y = M−1 x with x = (
x1, x2, . . . , xn

)′ (13)

generates the negative second differences of the vector x̃ = (
0; x; xn−1

)
, where the sup-

plemented components x̃0 and x̃n+1 exactly model the behaviour of the sine function at
0 and at π/2. Therefore, the Artificium algorithm inverts the formation of the difference
table of the sine function in the interval [0, π

2 ] up to an unknown factor. Bürgi takes care
of this factor by normalizing the leftmost column to sin(π/2) = 1 by dividing it by its nth
element.

5 Eigenvectors and eigenvalues

We now consider the sequence of the odd columns (from right to left) of the Artificium
table, and use the upper index j to count the number of iteration steps: a(0) := a ∈ R

n

for the initial column and a(1) := c, a(2) := e, . . . for the further odd columns, with
components a( j ) = (

a( j )
1 , a( j )

2 , . . . , a( j )
n

)′
. Then the algorithm including the normalization

may be written as

a( j ) = M a( j−1) , s( j ) = a( j )

a( j )
n

, j = 1, 2, . . . , (14)
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where s( j ) = (
s( j )
1 , s( j )

2 , . . . , s( j )
n

)′
is the vector of the j th approximations of the sine

values. This is the well-known power iteration, published 1929 by Richard von Mises
(1883–1953) and Hilda Geiringer (wife, 1893–1973). It is closely related to the eigenval-
ues λi (i = 1, . . . , n) of M and the corresponding eigenvectors vj. If there is only one
eigenvalue of maximum magnitude, λ1, the power iteration converges direction-wise to
the corresponding eigenvector v1 satisfying M v1 = v1 λ1.

In order to discuss the convergence speed of the power iteration (14) we need to solve the
eigenvalue problem of the Bürgi matrix M.

Theorem 2. There exists a regular matrix V and a diagonal matrix D such that M is
similar to D, i.e.,

M V = V D . (15)

The matrix V = (
vki

)
with

vki = sin
(
k (i − 1

2
)
π

n

)
, k, i = 1, . . . , n (16)

contains n linearly independent eigenvectors of M as its columns (i fixed), and D contains
the eigenvalues

λi = 1

4 sin2 (
(i − 1

2 ) π
2 n

) with λ1 > λ2 > · · · > λn (17)

on its diagonal. �

Proof. Multiplying the eigenvector condition Equ. (15) from the left with M−1 and from
the right with D−1 yields M−1 V = V D−1, i.e., M−1 has the same eigenvectors as M, but
the reciprocal eigenvalues. We will therefore first consider the simpler eigenvalue problem
of M−1.

Consider now the image w=(w1,w2, . . . , wn)
′ of the i th column vi = (v1i , v2i , . . . , vni )

′
of V under the mapping induced by M−1. Our goal is to take advantage of the tridiagonal,
almost periodic structure of M−1 seen in Equ. (12). Using the abbreviation ωi = (i − 1

2 ) π
n

and observing v0i = 0 and vn+1,i = vn−1,i we obtain

wk = − sin
(
(k − 1)ωi

) + 2 vki − sin
(
(k + 1)ωi

)
, k = 1, 2, . . . , n .

The addition formula of the sine function yields wk = 2 (1 − cosωi ) vki . Therefore, the
i th column of V is in fact an eigenvector, and the corresponding eigenvalue of M−1 is
2 (1−cosωi ) = 4 sin2(ωi/2). This directly yields Equ. (17) for the eigenvalues of M. �
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6 Rate of convergence
We will now investigate the power iteration for finding the eigenvector v1 of M associ-
ated with the unique eigenvalue λ1 of maximum magnitude, with the goal of proving its
convergence. We will also get results on the speed of convergence. As a consequence of
Bürgi’s normalizing division, Equ. (14) implies s( j )

n = 1. On the other hand, Equ. (16) with
k = n, i = 1 implies vn1 = 1, i.e., the eigenvector v1 as stated in Theorem 2, satisfies the
same normalization as Bürgi’s approximations s j . We can therefore restate Theorem 1 as

lim
j→∞ s( j ) = v1 = (

v11, . . . , vn1
)′

with vk1 = sin

(
k

π/2

n

)
, k = 1, . . . , n ,

or equivalently by introducing the error vector e( j ) = (
e( j )
1 , . . . , e( j )

n
)′

:

e( j )
k = s( j )

k − sin

(
k

π/2

n

)
→ 0 as j → ∞ . (18)

Power iteration becomes much more transparent if the matrix M is represented in the
coordinate system of its linearly independent eigenvectors. To do so, write Equ. (14) as

a( j ) = M V V−1 a( j−1) .

Multiplying both sides from the left by V−1 and using Equ. (15) yields

u( j ) = D u( j−1) with u( j ) = V−1 a( j ) or a( j ) = V u( j ) . (19)

Compared to Equ. (14), the repeated multiplication is done here simply by the diagonal
matrix D. The vector u( j ) can now be stated explicitly as

u( j ) = D j u(0) with u(0) = V−1 a(0) , (20)

where the j th power D j of D is also diagonal. u(0) will be called the modified initial vector;
the matrix V−1 needed here is given by

V−1 = 2

n
V′ H , (21)

which is easily verified with elementary trigonometry by calculating V V′ using the explicit
definition of V in Equ. (16).

To summarize, the j th approximations a( j )
k of the Artificium algorithm may be represented

by a set of explicit expressions, originating from (19), (20), (21) above and using the
eigenvectors vki (16) and the eigenvalues λi (17). Choose the initial column a(0) ∈ R

n and
evaluate

u(0)
i = 2

n

n∑
k=1

′ sin
(
k (i − 1

2 )
π

n

)
a(0)

k , 	′ : last term with half weight (22)

u( j )
i = u(0)

i · λ j
i , i = 1, . . . , n , λi = 1

4 sin2 (
(i − 1

2 ) π
2 n

) (23)

a( j )
k =

n∑
i=1

sin
(
k (i − 1

2 )
π

n

)
u( j )

i , k = 1, . . . , n . (24)
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Therefore, the rate of convergence depends on the eigenvalues λi as well as on the choice
of the initial column a(0).

The initial column a(0) needs to be chosen such that u(0)
1 �= 0, i.e., a(0) needs to have a

non-vanishing component in the direction of v1. In the introductory example of Section
2 the vector a(0) = v2 = (1, 0,−1)′ in the direction of the second eigenvector would be
an unhappy choice. In exact arithmetic, power iteration yields only vectors of the same
direction. A practical realization in Matlab (precision 15 digits) would save the situation:
after 37 iterations the first eigenvector is finally reached.

To begin with, assume in addition to u(0)
1 �= 0 also u(0)

2 �= 0. As a consequence of the

inequality in Equ. (17) the first term (i = 1) of the sum for a( j )
k in Equ. (24) approximates

a( j )
k , and the second term (i = 2) approximates the error e( j )

k for large j :

a( j )
k = u(0)

1 λ
j

1 sin
(
k

π

2 n

)
+ u(0)

2 λ
j

2 sin

(
k

3 π

2 n

)
+ · · ·

a( j )
n = u(0)

1 λ
j

1 − u(0)
2 λ

j
2 + · · · .

(25)

The ratio s( j )
k of the two expressions is

s( j )
k = a( j )

k

a( j )
n

= sin
(
k

π

2 n

) + e( j )
k ,

where the error (18) is approximately

e( j )
k = u(0)

2

u(0)
1

(
λ2

λ1

) j (
sin

(
k

π

2 n

) + sin
(
k

3 π

2 n

)) + . . . . (26)

To generalize this particular case, assume now that u(0)
2 = 0 to be also possible. Then we

have the following theorem based on the modified initial column u(0):

Theorem 3. Consider an Artificium with the modified initial column u(0) = (
u(0)

1 , . . . ,

u(0)
n

)
of (22) with u(0)

1 �= 0. Let r ≥ 2 be smallest index with u(0)
r �= 0. Then we have as a

generalization of Equ. (26)

e( j )
k = u(0)

r

u(0)
1

(
λr

λ1

) j (
(−1)r sin

(
k

π

2 n

)
+ sin

(
k

(2 r − 1) π

2 n

))
+ · · · . (27)

We define the convergence quotient of the Artificium as the ratio q( j )
k = e( j−1)

k /e( j )
k of two

consecutive errors. In our first-term approach the limiting convergence quotient,

Qr = lim
j→∞ q( j )

k = λ1

λr
, r ≥ 2 , (28)

independent of j and k, is a good approximation for q( j )
k . For large n we have Qr ≈

(2 r − 1)2.
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7 Examples

In the list below we give a few typical examples of initial columns and convergence quo-
tients. For simplicity the upper index of the initial column is suppressed: a(0)

k = ak .

The case n = 3 is the introductory example of Section 2; the case n = 9 below is Bürgi’s
example. Both cases yield r = 3. If n is a multiple of 3, n = 3 m, integer initial columns
leading to r = 3 and Q3 bounded by 25 are not difficult to find; certainly Bürgi had a good
intuition.

The case n = 4 is one of the many examples with r = 2, where integer initial columns with
r > 2 are difficult to find or do not exist. Then the convergence is fairly slow, Q2 ≈ 9. For
n = 15 we found an integer initial column close to a multiple of the sines to be calculated,
yielding r = 4 and Q4 = 46.9.

The final two examples considering values of n divisible by 15, n = 15 m, were found
by Grégoire Nicollier [9]. They are characterized by initial columns with only a few non-
zero elements. The last example shows a remarkable initial column leading to r = 6 and
Q6 ≈ 121, however only with irrational components (involving the golden ratio φ =
(1 + √

5)/2 = 1.618034).

n = 3: a = (4, 7, 8)′, u2 = 2
3

(
1 · a1 + 0 · a2 − 1 · (a3/2)

) = 0, r = 3 ⇒
Q3 = λ1

λ3
= sin2(75◦)

sin2(15◦)
= 7 + 4

√
3 = 13.92820

n = 4: a = (4, 7, 9, 10)′, u2 = 0.20111, r = 2 ⇒
Q2 = λ1

λ2
= sin2(33.75◦)

sin2(11.25◦)
= 8.10973

n = 9: a = (2, 4, 6, 7, 8, 9, 10, 11, 12)′, u2 = 0, r = 3 ⇒
Q3 = λ1

λ3
= sin2(25◦)

sin2(5◦)
= 23.51281

n = 15: a = (1, 2, 4, 5, 6, 7, 8, 9, 10, 10, 11, 11, 12, 12, 12)′, u2 = u3 = 0,

r = 4 ⇒ Q4 = λ1

λ4
= sin2(21◦)

sin2(3◦)
= 46.88760

n = 15 m: ak = 1 if k = 2 m or k = 10 m or k = 12 m , ak = 0 otherwise,
r = 4 ⇒ Q4 ≈ 49, e.g., Q4 = 48.94 for n=90 (Nicollier)

n = 15 m: ak = 1 if k = m or k = 11 m, ak = φ if k = 7 m or k = 13 m,
ak = 0 otherwise, r = 6 ⇒
Q6 = λ1/λ6 ≈ 121, goes back to Q4 ≈ 49 after a few steps if φ is
only approximated, e.g., by φ ≈ 8/5 (Grégoire Nicollier, Sion)
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