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1 The inequality

The second degree inequality which establishes a fundamental relation between the semi-
perimeter s on the one side, and the circumradius R and the inradius r of a triangle ABC
on the other side is

16Rr − 5r2 � s2 � 4R2 + 4Rr + 3r2. (1)

This double inequality, known as Gerretsen’s inequality [6], is invaluable in the theory
of triangle inequalities. The standard way of proving it is to calculate the squares of the
distances from the incenter to the centroid and the orthocenter. It resembles the derivation
of the Euler inequality R � 2r from the Euler formula OI 2 = R(R − 2r) for the distance
from the incenter I to the circumcenter O, [4]. Let G and H denote the centroid and the
orthocenter of a triangle. Then

9GI 2 = s2 − 16Rr + 5r2,

and

H I 2 = 4R2 + 4Rr + 3r2 − s2.

.

In der Dreiecksgeometrie gehören die Ungleichungen von Gerretsen zu den wichtig-
sten quadratischen Ungleichungen: Sie beschränken den halben Umfang bei gegebe-
nem Um- und Inkreisradius von oben und von unten. Der übliche Beweis beruht auf
dem Ausrechnen von Abständen zwischen ausgezeichneten Punkten des Dreiecks. In
der vorliegendenArbeit liefert der Autor einen weiteren, elementaren Beweis, indem er
neben der bekannten Schurschen Ungleichung eine einfache, allgemeingültige Unglei-
chung für drei reelle Zahlen ins Spiel bringt. Darüber hinaus zeigt er, wie man einige
bekannte Ungleichungen aus den Ungleichungen von Gerretsen folgern kann.
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Since squares must be non-negative, the inequalities immediately follow. For the derivation
of H I 2 see [8, p. 200]. Once H I 2 is determined, one can consider the triangle OH I and
its Cevian GI . Using Euler’s formula OI 2 = R(R − 2r), OH 2 = 9R2 − (a2 + b2 + c2),
the ratio OG : GH = 1 : 2 on the Euler line, and invoking Stewart’s theorem, GI 2 is
easily computed. Another way of proving the Gerretsen inequalities is by deducing them
from the so-called fundamental inequality, [1],

2R2 + 10Rr − r2 − 2(R − 2r)
√

R2 − 2Rr

� s2 � 2R2 + 10Rr − r2 + 2(R − 2r)
√

R2 − 2Rr ,

whose proof is rather artificial and involved. Indeed,

2R2 + 10Rr − r2 − 2(R − 2r)
√

R2 − 2Rr

= 16Rr − 5r2 +
(
R − 2r −

√
R2 − 2Rr

)2
� 16Rr − 5r2,

and

2R2 + 10Rr − r2 + 2(R − 2r)
√

R2 − 2Rr

= 4R2 + 4Rr + 3r2 −
(
R − 2r −

√
R2 − 2Rr

)2
� 4R2 + 4Rr + 3r2.

We give a proof of the LHS inequality of (1) based on the well-known Schur inequality.
For the RHS inequality of (1) we use a simple inequality for three real numbers and the
same trigonometric identity used in the standard proof.

2 Lemmas

Lemma 1 (Schur’s inequality). For three positive numbers x, y and z and all a � 0 it
holds

xa(x − y)(x − z) + ya(y − x)(y − z) + za(z − x)(z − y) � 0,

with equality if and only if x = y = z.

For an easy proof see [11, p. 83].

Let
T1 := x + y + z, T2 := xy + yz + zx, T3 := xyz.

For a = 1 the Schur inequality can be rewritten as

T 3
1 − 4T1T2 + 9T3 � 0.

Lemma 2. For three real numbers a, b and c it holds

(−a2 + b2 + c2)(a2 − b2 + c2)(a2 + b2 − c2) � (−a + b + c)2(a − b + c)2(a + b − c)2.
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Proof. Let a � b � c and assume that a2 + b2 − c2 � 0, since the other cases are trivial.
Then by multiplying the three inequalities

(−a2 + b2 + c2)(a2 − b2 + c2) � (−a + b + c)2(a − b + c)2,

(a2 − b2 + c2)(a2 + b2 − c2) � (a − b + c)2(a + b − c)2,

(−a2 + b2 + c2)(a2 + b2 − c2) � (−a + b + c)2(a + b − c)2,

and taking the square root, we get the desired inequality. For the first inequality, we have

(−a + b + c)2(a − b + c)2 − (−a2 + b2 + c2)(a2 − b2 + c2)

=
(
c2 − (a − b)2

)2 −
(
c4 − (a2 − b2)2

)

= (a − b)2
[
(a − b)2 − 2c2 + (a + b)2

]

= 2(a − b)2(a2 + b2 − c2) � 0,

and similarly for the others. �

Lemma 3. For the product of the cosines of the angles in a triangle it holds

cos A cos B cosC = s2 − (2R + r)2

4R2 .

Proof. One proof is given in the excellent book [9, p. 56] where it is shown that the cosines
are roots of the polynomial

4R2x3 − 4R(R + r)x2 + (s2 + r2 − 4R2)x + (2R + r)2 − s2 = 0.

By Vieta’s formula follows the claim. A more direct proof follows from the trigonometric
identity

cos A cos B cos C = 1

2
(sin2 A + sin2 B + sin2 C) − 1, (2)

the Law of Sines, sin A = a/(2R), and the algebraic identity for the sum of the squares of
the sides

a2 + b2 + c2 = 2(s2 − 4Rr − r2). (3)

The trigonometric identity (2) is equivalent to

cos2 A + cos2 B + cos2 C + 2 cos A cos B cos C = 1.

The last one is true, since

cos2 A + cos2 B + cos2 C − 1

= 1 + cos 2A

2
+ 1 + cos 2B

2
+ cos2(A + B) − 1

= cos(A + B) [cos(A − B) + cos(A + B)]

= −2 cos A cos B cos C.

For the algebraic identity see [9, p. 52]. �
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3 The proof

Every inequality for three positive x, y, z > 0, with the substitution

a = y + z, b = z + x, c = x + y,

can be translated to an inequality for the sides of a triangle a, b, c, and vice versa. Then
by invoking Heron’s formula for the area A = √

s(s − a)(s − b)(s − c), A = rs =
abc/(4R) and the identity (x + y)(y + z)(z + x) = (x + y + z)(xy + xz + zx) − xyz, we
get for the elements of the triangle in terms of T1, T2, T3

s = T1, r2 = T3

T1
, Rr = T1T2 − T3

4T1
.

Thus

s2 − 16Rr + 5r2 = T 2
1 − 16

T1T2 − T3

4T1
+ 5

T3

T1

= T 3
1 − 4T1T2 + 9T3

T1
� 0,

by the Schur inequality. That is the LHS of Gerretsen’s inequality (1).

For the proof of the RHS we take a, b and c in Lemma 2 to be the sides of a triangle. By
the Law of Cosines, −a2+b2+c2 = 2bc cos A and similarly for the other multiples. Then
Lemma 2 gives

8a2b2c2 cos A cos B cos C � 64(s − a)2(s − b)2(s − c)2

= 64A4/s2 = 4a2b2c2 r2

R2 .

Now we apply Lemma 3 to the expression for cosines and obtain

s2 − (2R + r)2 � 2r2,

which is the RHS of Gerretsen’s inequality (1).

4 Equivalent forms

In this section we will give a few interesting equivalent forms of Gerretsen’s inequality.
It is remarkable that though not explicitly, the inequality has appeared almost a century
before Gerretsen’s publication. In 1870 M. Colins [3] gave the following inequality for the
sides a, b, c of a triangle

2(a + b + c)(a2 + b2 + c2) � 3(a3 + b3 + c3 + 3abc).

It is equivalent to the LHS of (1) by (3) and the identity, see [9, p. 52]

a3 + b3 + c3 = 2s(s2 − 6Rr − 3r2).
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By (3) it follows that

24Rr − 12r2 � a2 + b2 + c2 � 8R2 + 4r2,

is an equivalent inequality to (1), and so is

4r(5R − r) � ab + bc + ca � 4(R + r)2,

since

ab + bc + ca = 1

2

[
(a + b + c)2 − (a2 + b2 + c2)

]
= s2 + 4Rr + r2. (4)

The RHS of the last inequality can be rewritten in trigonometric form using the Law of
Sines and the well-known identity

cos A + cos B + cosC = R + r

R
.

Then it becomes

sin A sin B + sin B sinC + sin C sin A � (cos A + cos B + cos C)2.

Another equivalent trigonometric form of the inequality is

cos A cos B cosC � (1 − cos A)(1 − cos B)(1 − cos C),

which comes as a byproduct from the derivation of H I 2 in [8].

5 Ono’s, Blundon’s and Hadwiger–Finsler inequality

In 1914 T. Ono conjectured [10] that for all triangles

27(−a2 + b2 + c2)2(a2 − b2 + c2)2(a2 + b2 − c2)2 � (4A)6.

The conjecture was subsequently shown to be false in general, with the simple counterex-
ample a = 2, b = 3, c = 4 and A = 3

√
15/4. However, it is true for acute triangles. The

inequality from Lemma 2 can be rewritten as

(−a2 + b2 + c2)(a2 − b2 + c2)(a2 + b2 − c2) � r

s
(4A)3.

Combining this with the well-known inequality s � 3
√

3r , we get

3
√

3(−a2 + b2 + c2)(a2 − b2 + c2)(a2 + b2 − c2) � (4A)3.

But for an acute triangle all the terms in the last inequality are positive and it can be
squared, giving the Ono inequality.
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Blundon’s inequality is the following linear inequality, [1]

s � 2R + (3
√

3 − 4)r.

It is a consequence of Gerretsen’s inequality, since by the Euler inequality

s2 � 4R2 + 4Rr + 3r2

=
(
2R + (3

√
3 − 4)r

)2 − r(12
√

3 − 20)(R − 2r)

�
(
2R + (3

√
3 − 4)r

)2
.

We remark that an inequality of type s � λR + μr holds for all triangles only if it has the
form

s � 2R + (3
√

3 − 4)r + α(R − 2r) + βr,

for some α, β � 0. In this sense Blundon’s inequality is the best possible linear inequality.
Similarly, s � 3

√
3r is the best possible linear inequality of type s � λR + μr , see [2].

To conclude this note, we show that the celebrated Hadwiger–Finsler inequality [5], [7]

4
√

3A + Q � a2 + b2 + c2 � 4
√

3A + 3Q, (5)

with Q := (a−b)2+(b−c)2+(c−a)2, can also be deduced from Gerretsen’s inequalities.
It holds

√
3s � 4R + r , since by the RHS of (1) and Euler’s inequality

3s2 � 3(4R2 + 4Rr + 3r2)

= (4R + r)2 − (4R + 4r)(R − 2r)

� (4R + r)2.

Hence by (4)

a2 + b2 + c2 −
[
(a − b)2 + (b − c)2 + (c − a)2

]

= 4(ab + bc + ca) − (a + b + c)2

= 4r(4R + r) � 4
√

3A,

proving the LHS of (5). Similarly by the LHS of (1) and s � 3
√

3r

a2 + b2 + c2 − 3
[
(a − b)2 + (b − c)2 + (c − a)2

]

= 16(ab + bc + ca) − 5(a + b + c)2

= 4(4r2 + 16Rr − s2)

� 36r2 � 4
√

3A,

which is the RHS of (5).
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