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1 Motivation

Time or frequency-dependent sincs (henceforth referred to as signals) are often used by
students and researchers to analyze idealized models and obtain bounds for practical sys-
tems. The simplicity of the sinc dual, the rectangle signal, indeed makes it an attractive
choice in order to deal with diverse problems such as interpolation, signal reconstruction,
pulse shaping, intersymbol interference, and channel characterization to name a few. As a
consequence, results related to the sinc become appealing to academicians in general and
to the Signal Processing and Communication Engineering community in particular. In this
work, we use the standard definition for the sinc, namely

sinc(x) =
{

sin(x)/x for x �= 0

1 for x = 0.

.

An dieser Stelle wurde schon mehrfach über das verblüffende Phänomen der Baillie–
Borwein-Integrale berichtet. Der Autor der vorliegenden Arbeit verwendet Parsevals
Identität und die Faltung von Fourier-Reihen, um nochmals einen neuen Einblick zu
gewinnen. Beim iterierten Falten eines Rechteckimpulses mit sich selber tritt ein ho-
rizontaler Verschmierungseffekt auf, der das Verhalten der Baillie–Borwein-Integrale
anschaulich erklärt. Wir verweisen auch auf den Artikel von Hanspeter Schmid aus
dem Jahr 2014, der in ähnlicher Weise mit iterierten Faltungen die vertikale Erosion
des initialen Plateaus untersucht hat.
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In 2006, this author independently presented some novel results related to sinc sums [1].
Shortly after, Baillie and the Borweins published results on surprising sinc sums and inte-
grals [2] that drew his attention to their earlier reports in 2001 [3]. Recently, Schmid [4]
presented a graphical proof of this remarkable sinc behavior introduced by the Borweins
in 2001, namely that ∫ ∞

0

N∏
k=0

sinc

(
t

2k + 1

)
dt = π

2
(1)

for N = 0, 1, 2, 3, 4, 5, 6. However, for N > 6, the result of Eq. (1) suddenly becomes
less than π/2. Schmid’s proof is based on expressing the integral in Eq. (1) as the Fourier
transform at the origin of the integrand being the convolution of (N + 1) sincs. Hence,
he repeatedly convolved two unit-area rectangular pulses but with different widths. The
resulting initial plateau gets gradually eroded with more convolutions. He derived the same
condition as the Borweins that makes the convolution peak (at the origin) drop below
unity, hence causing the integral to break. Shortly after, Almkvist and Gustavsson [5] used
the Poisson summation formula to establish the result of Eq. (1) amongst others. Baillie
and the Borweins [2] also reported other interesting results related to sums and integrals
involving sincs. Defining

SN =
∞∑

n=1

sinc(n)N (2)

and

IN =
∫ ∞

0
sincN ( f ) d f , (3)

they reported that while IN is a rational multiple of π for all non-zero integers N , SN is
−1/2 plus a rational multiple of π for N = 1, 2, 3, 4, 5, 6. However, SN suddenly changes
to a polynomial in π of degree N for N > 6. More specifically,

SN = IN − 1

2
(4)

for N = 1, 2, 3, 4, 5, 6 but not for N > 6. To explain this surprising sinc sum behavior,
they established a general condition relating sinc sums to integrals, in addition to simple
arguments using trigonometric identities and properties of Bernoulli polynomials.

Our aim in this work is to provide yet another graphically-illustrated and intuitively-
simplistic explanation of the results in Eq. (4). We approach the problem with a signal
processing background, motivated by Schmid’s recent report [4], who too, had a similar
approach to the problem. Even though our method bears some similarity to Schmid’s, it is
used in a different context that has been presented at an earlier time [1]. We use a repeated
convolution of a rectangular pulse with itself in order to construct periodic waveforms. We
use the Fourier series expansion along with Parseval’s theorem [6] to provide alternative
derivations of some of the sinc sums reported by Baillie and the Borweins. The sudden
break in the sinc sum is clearly illustrated through an aliasing phenomenon that is due to
the smearing effect of the repeated convolution. Hopefully, the reader shall find the dual
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use of the repeated convolution effect rather entertaining. While Schmid focused on the
vertical effect of a repeated convolution, we shall focus on its horizontal effect in order to
explain this interesting sinc behavior. Even though our illustrated approach is applied to
only specific cases of the sinc sums, we hope that it is appealing enough with its clarity,
simplicity and intuitive approach.

2 Alternative derivations

In the following we focus on the sinc sum SN of Eq. (2) for N = 2, 4, 6, and 8. We use
the Fourier series expansion along with Parseval’s theorem to provide alternative ways
to evaluate these sums. In this process, we shall graphically illustrate through an aliasing
effect the reason for which S8 breaks the trend and changes from a rational multiple of
π to a polynomial in π of degree 8. Our approach follows a previous work [1] wherein a
series of four periodic waveform si (t) (i = 1, . . . , 4) is constructed by duplicating base
pulses pi (t) (i = 1, . . . , 4) at multiples of the period T (taken to be unity). Hence,

si (t) =
∞∑

n=−∞
pi (t − n) for i = 1, . . . , 4 and t ∈ R ,

with p1(t) a rectangular pulse of unit amplitude and width α (0 < α ≤ 1) defined by

p1(t) =
{

1 for |t| ≤ α/2

0 for |t| > α/2
(5)

and p2(t), p3(t), p4(t) are pulses resulting from the successive convolution of p1(t) with
itself and are found to be

p2(t) =
{

−|t| + α for |t| ≤ α

0 for |t| > α
(6)

p3(t) =

⎧⎪⎪⎨
⎪⎪⎩

−t2 + 3α2/4 for |t| ≤ α/2

(1/2)
[
|t| − 3α/2

]2
for α/2 < |t| ≤ 3α/2

0 for |t| > 3α/2

(7)

and

p4(t) =

⎧⎪⎨
⎪⎩

|t|3/2 − αt2 + 2α3/3 for |t| ≤ α

−|t|3/6 + αt2 − 2α2|t| + 4α3/3 for α < |t| ≤ 2α

0 for |t| > 2α.

(8)

Figure 1 depicts s1(t) with the base pulse p1(t) shown in bold. Signals si (t) (i = 2, 3, 4)
have plots analogous to Figure 1 except that they use base pulses pi(t) (i = 2, 3, 4). For
the sake of conciseness, we omit the plots of si (t) (i = 2, 3, 4) and instead we depict in
Figure 2 the normalized base pulses p2(t), p3(t), and p4(t) each respectively divided by
α, α2, and α3 (for α = 0.2). Note that for all four signals si (t) (i = 1, . . . , 4), α should
not exceed a certain value in order for their repeating base pulses not to alias. Going
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Fig. 1 Periodic signal s1(t) showing in bold the base pulse p1(t).

p2(t)
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−0.4 −0.3 −0.2 0.2 0.3 0.4

Fig. 2 Base pulses p2(t), p3(t), and p4(t) (respectively scaled by 1/α, 1/α2, and 1/α3) gener-
ated by the successive self-convolution of the rectangular base pulse p1(t) for α = 0.2.

from s1(t) to s4(t), the range of α for alias-free signals is progressively reducing since
each convolution widens the resulting pulse by α. Hence, the condition on α for alias-free
signal si (t) (i = 1, . . . , 4) is 0 < α ≤ 1/ i .

It is easy to check that the nth coefficient (n is integer) of the Fourier series expansion of
s1(t) is c1n = α sinc (απn). Using the convolution property of the Fourier series [6], the
coefficients cin of signals si (t) (i = 2, 3, 4) each time keep multiplying by α sinc (απn).
Hence, cin is directly found to be

cin = αi sinci (απn) for i = 1, . . . , 4. (9)

Parseval’s theorem states that∫ 1/2

−1/2
|si (t)|2dt =

∞∑
n=−∞

|cin |2 for i = 1, . . . , 4 (10)
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where the modulus on both sides of Eq. (10) may be omitted since cin is real owing to the
fact that si (t) is real even symmetric [6]. In the absence of aliasing, si (t) = pi (t) for |t| ≤
1/2. Hence, using Eqs. (5)–(8), the LHS of Eq. (10) for i = 1, . . . , 4 respectively evaluates
to α, 2α3/3, 11α5/20, and 151α7/315. Using Eqs. (9) and (10), the even symmetry of
sinc(·), and the fact that sinc(0) = 1, we get for i = 1

∞∑
n=−∞

α2 sinc2(απn) = α2

[
1 + 2

∞∑
n=1

sinc2(απn)

]
= α for 0 < α ≤ 1

⇔ Ŝ2(α) ≡
∞∑

n=1

sinc2(απn) = 1

2α
− 1

2
for 0 < α ≤ 1.

(11)

Similarly for i = 2, we get

Ŝ4(α) ≡
∞∑

n=1

sinc4(απn) = 1

3α
− 1

2
for 0 < α ≤ 1/2 (12)

and for i = 3

Ŝ6(α) ≡
∞∑

n=1

sinc6(απn) = 11

40α
− 1

2
for 0 < α ≤ 1/3 (13)

and finally for i = 4

Ŝ8(α) ≡
∞∑

n=1

sinc8(απn) = 151

630α
− 1

2
for 0 < α ≤ 1/4. (14)

To relate our derivations to those of Baillie et al. [2], we consider the special case of
α = 1/π . Hence, referring to Eqs. (2) and (11)–(14), SN is given by ŜN (1/π) for N =
2, 4, 6, but not N = 8. This is because the non-aliasing conditions on α given at the end
of Eqs. (11)–(14) are true for N = 2, 4, 6, but fail for N = 8 since 1/4 < 1/π < 1/3.
Hence, we get

S2 = Ŝ2(1/π) = π/2 − 1/2

S4 = Ŝ4(1/π) = π/3 − 1/2

S6 = Ŝ6(1/π) = 11π/40 − 1/2.

However,

S8 = Ŝ8(1/π) = 151π/630 − 1/2 + ε (15)

where ε is an excess term resulting from aliasing. We now set to illustrate this sud-
den change in S8 by extending Ŝ8(α) for 1/4 < α ≤ 1/3 (that we shall denote by
ˆ̂S8(α)) leading to the evaluation of ε as a polynomial in π (as reported by Baillie and the
Borweins [2]). For 1/4 < α ≤ 1/3 the periodic signal s4(t) now undergoes an aliasing
phenomenon. Let s4A(t) denote this aliased signal. Assume that α = δ + 1/4 , where
0 < δ ≤ 1/12. Figure 3 illustrates s4A(t) for the case δ = 0.08. For clarity, the vertical
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axis is scaled by 1/α3. It is important to note that for −1/2 ≤ t ≤ 1/2, s4A(t) is not equal
to p4(t) but rather to p4A(t) (highlighted in bold in Figure 3) given by

p4A(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|t|3/2 − αt2 + 2α3/3 for |t| ≤ α

−|t|3/6 + αt2 − 2α2|t| + 4α3/3 for α < |t| ≤ (1/2) − 2δ

2δt2 − 2δ|t| + 8δ3/3 + δ/2 for (1/2) − 2δ < |t| ≤ 1/2

0 for |t| > 1/2

(16)

1−1

2/3

−0.34−0.5−0.66 0.34 0.5 0.66

Fig. 3 Periodic signal s4A(t) illustrating the aliasing effect with p4A(t) highlighted in bold line. The
extra-bold lines correspond to the aliased region that is behind the excess term ε causing the sudden
break in S8. In this plot, α = 0.33 , δ = 0.08, and the vertical axis is scaled by 1/α3.

The last non-zero term in the definition of p4A(t) in Eq. (16) is highlighted by an extra-
bold line in Figure 3. It is this aliasing region that is exactly responsible for the excess term
ε in Eq. (15) which is behind this sudden break in S8. It turns out that the aliasing does not
affect the Fourier series coefficients of s4A(t) [6] (given by Eq. (9) as c4n= α4 sinc4 (απn)),
but changes the LHS of Eq. (10) which is now given by∫ 1/2

−1/2
s2
4A(t)dt =

∫ 1/2

−1/2
p2

4A(t)dt

= 151α7

315
+ 1

2520

[ − 1 + 28α − 336α2 + 2240α3 − 8960α4 + 21504α5

− 28672α6 + 16384α7]
= 151α7

315
+ 1

2520
(−1 + 4α)7 .

(17)

Using Eq. (17) and the fact that c4n = α4 sinc4 (απn) in Eq. (10), we get

ˆ̂S8(α) =
∞∑

n=1

sinc8(απn) = 151

630α
− 1

2
+ (−1 + 4α)7

5040α8
for

1

4
< α ≤ 1

3
. (18)



Alternative investigation into “Surprising sinc sums and integrals” 21

Comparing Eqs. (14) and (18), we note that the excess term resulting from aliasing turns
out to be a polynomial of 1/α and is given by

ε̂(α) = (−1 + 4α)7

5040α8
for

1

4
< α ≤ 1

3
. (19)

In particular, for the special case of α = 1/π , the excess term ε in the evaluation of S8 in
Eq. (15) is given by (19) as

ε = ε̂(1/π) = π(4 − π)7

5040
(20)

which is a polynomial in π of order 8, as stated by Baillie and the Borweins. In reference
to their derivations [2, Eqs. (26)–(35)], we may follow their procedure to elaborate on S8
(instead of S7) and find

S8 =
∞∑

n=1

sinc8(n)

n8

= − 128 π8
[

35

128
φ8(0) − 7

16
φ8

(
2

2π

)
+ 7

32
φ8

(
4

2π

)

− 1

16
φ8

(
6

2π

)
+ 1

128
φ8

(
8 − 2π

2π

) ]
(21)

where φ8(x) is the 8th normalized Bernoulli polynomial given by

φ8 = − 1

1209600
+ x2

60480
− x4

17280
+ x6

8640
− x7

10080
+ x8

40320
. (22)

It is easy to check that the substitution of Eq. (22) in Eq. (21) expresses S8 as an 8th

order polynomial in π that is identical to ˆ̂S8 (1/π) given by Eq. (18). In Eq. (21), “8” in
the argument of the last term was replaced by (8 − 2π) because the numerators of the
arguments in the Bernoulli polynomial must not exceed 2π . As pointed out by Baillie and
the Borweins, it is exactly this fact that explains the sudden change in S8 because 8 > 2π .
Hence, the excess term ε in Eq. (15) may alternatively be expressed according to Baillie
et al. [2, Eq. (35) except N = 8 is used instead of N = 7 and the typographical error “64”
removed] as

ε = π8
[
φ8

(
8

2π

)
− φ8

(
8 − 2π

2π

)]
. (23)

Using the standard identity related to Bernoulli polynomials

φN (x) − φN (x − 1) = (x − 1)N−1

(N − 1)! ,

ε in Eq. (23) can be written as

ε = π8

(7)!
(

4

π
− 1

)7

= π (4 − π)7

5040
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which is identical to Eq. (20). Therefore, the 2π congruence in the argument’s numerator
of the Bernoulli polynomials that was used by Baillie and the Borweins to justify this
sudden break in S8 may alternatively be explained by the aliasing phenomenon previously
illustrated by the extra-bold-highlighted region of Figure 3.

As a final reference to the reports of Baillie and the Borweins [2, Example 3, Eq. (3)], we
turn our attention back to Eq. (4) in order to relate the integral of sincs to their sums in a
simple and intuitive manner. We now drop the periodicity condition on the previous signals
(i.e., pi (t) = si (t) for all t). In this case, there is no constraint on α. We obtain the Fourier
transforms of si (t) that turn out to be identical to the Fourier series coefficients found
earlier [6] except that the index “n” is replaced with the continuous frequency variable
“ f ”. Applying the continuous form of Parseval’s theorem [6], we obtain very analogous
results related to the sinc integral, namely, if we define

Î N (α) =
∫ ∞

0
sincN (απ f )d f

then Î 2(α), Î 4(α), Î 6(α), and Î 8(α), respectively evaluate to 1/2α, 1/3α, 11/40α, and
151/630 α leading to the conclusion (refer to Eqs. (11)–(14)) that

ŜN (α) = Î N (α) − 1

2
for α ≤ 2/N and N = 2, 4, 6, 8 . (24)

The process of successive convolutions and application of Parseval’s theorem may thus be
continued leading to the conclusion that Î N (α) is a rational multiple of 1/α (irrespective
of non-zero α) for all non-zero positive even integers N. This implies that IN in Eq. (3)
(equal to Î N (1/π)) is also a rational multiple of π for all non-zero positive even integers
N . In fact, since ŜN (α) is only defined for the non-aliasing range α ≤ 2/N , Eq. (24) also
holds true for all non-zero positive even integers N . The problem lies with SN which is
equal to ŜN (1/π) only for N = 2, 4, 6 but not for N = 8 because 1/π > 1/4. For this
reason SN = IN − 1/2 for N = 2, 4, 6, but breaks into a polynomial in π for N ≥ 8 .

3 Conclusion
In this work, we presented a simple illustrated explanation of some remarkable results pre-
viously reported about sinc sums and integrals. We approached the problem with a signal
processing background frequently utilizing tools such as convolution, Fourier series ex-
pansion, and Parseval’s theorem. We illustrated the sudden break in sinc sums through the
aliasing effect due to the horizontal smearing of a repeated self-convolution of a rectangle.
Even though our illustrated approach was applied to only the first four even powers of
sinc, we hope that it provided yet another simplistic and intuitively appealing explanation
of this remarkable sinc behavior.

Acknowledgement

The author would like to thank Norbert Hungerbühler and the anonymous reviewers for
their valuable comments that helped in improving the write-up and presentation of this
paper.



Alternative investigation into “Surprising sinc sums and integrals” 23

References

[1] Z. Bahri, Some Results on the Sinc Signal With Applications to Inter Symbol Interference in Baseband
Communication, Proc. Int. Elect. Conf. on Comp., Inf., Sys. Sc. Eng., Bridgeport, CT, Springer-Verlag,
(2006) 519–524.

[2] R. Baillie, D. Borwein, J.M. Borwein, Surprising Sinc Sums and Integrals, American Mathematical
Monthly, Vol. 115, No. 10, Dec., (2008), 888–901.

[3] D. Borwein and J.M. Borwein, Some remarkable properties of sinc and related integrals, The Ramanujan
Journal 5 (2001), 73–89.

[4] H. Schmid, Two curious integrals and a graphic proof, Elem. Math. 69 (2014), 11–17.

[5] G. Almkvist and J. Gustavsson, More remarkable sinc integrals and sums, arXiv:1405.1265v2, (2014).

[6] A. Papoulis, Signal Analysis, McGraw-Hill, 1977.

Zouhir Bahri
Electrical and Electronics Engineering Dept.
University of Bahrain
Isa Town, Bahrain
e-mail: zkbahri@uob.edu.bh


