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1 Introduction

The famous Russian mathematician Andrei N. Kolmogorov (1903–1987) once said:
“Every serious proof in mathematics eventually boils down to proving an inequality”.

One of the most common and useful basic “folklore” inequalities is the arithmetic
mean-geometric mean inequality, for short the AM-GM inequality: A ≥ G, where A =
1
n

∑n
i=1 xi is the arithmetic mean (average, commonly denoted by x) and G = (∏n

i=1 xi
) 1

n

the geometric mean of real numbers x1, x2, . . . , xn ≥ 0. Equality occurs if and only if
x1 = · · · = xn . The r th power mean Mr (x) of a vector x = (x1, . . . , xn) ∈ Rn+ (all
xi ≥ 0) is defined by

Mr := Mr (x) =
(

1

n

n∑
i=1

xr
i

)1/r

for all r ∈ R ∪ {±∞}.

.

Die Ungleichung vom arithmetischen und geometrischen Mittel gehört zu den grundle-
gendsten Abschätzungen in der Mathematik. Für zwei Variablen war sie bereits Euklid
bekannt, ein Beweis für beliebig viele Variablen findet sich erstmals 1729 in einer
Arbeit des schottischen Mathematikers Colin Maclaurin. Auch Cauchy widmet sich
in seinem Werk Analyse algébrique von 1821 dieser Ungleichung. So sind im Laufe
der Geschichte zahlreiche algebraische, geometrische, topologische und kombinatori-
sche Beweise zusammengekommen, welche oftmals anschauliche geometrische oder
auch physikalische Interpretationen zulassen. Die Anwendungen und Verallgemeine-
rungen sind unübersehbar und allgegenwärtig im mathematischen Tagesgeschäft. Der
Autor der vorliegenden Arbeit gibt einen Überblick, der bis hin zum arithmetisch-
geometrischen Mittel reicht und die Betrachtung neuer gemischter Mittel anregt.
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M1 is the arithmetic mean A, M0(= limr→0 Mr ) is the geometric mean G, while M−1 is
the harmonic mean, M2 the quadratic mean, M−∞ = min{xi }, M∞(= limr→∞ Mr ) =
max{xi } etc.

The weighted version is given by

Mr (x) =
(

n∑
i=1

wi x
r
i

)1/r

,

where

w = (w1, . . . , wn), w1, . . . , wn ≥ 0 and
n∑

i=1

wi = 1.

There are two important inequalities for (weighted) power means. The first is the increas-
ing property (or monotonicity): p ≤ q ⇒ Mp(x) ≤ Mq (x) and the second is the prod-
uct property: Mr (x)Mr (y) ≤ Mr (xy) for all r , where xy = (x1y1, . . . , xn yn) is the
(component-wise) product of vectors x and y. In the generic case p = 0, q = 1 the
increasing property is just the AM-GM inequality, while the case r = 1 of the product
property is the Chebyshev inequality (from 1860): if x1 ≤ · · · ≤ xn and y1 ≤ · · · ≤ yn

then A(x)A(y) ≤ A(xy).

The AM-GM inequality for two numbers was probably known to Pythagoras (about 500
B.C.) and for sure to Euclid (about 300 B.C.). The general AM-GM inequality for any
n was probably known to Fermat, Descartes, maybe Galileo and others around 1630, but
definitely to Newton about 1705. The first rigorous proof appeared about 1725 by Mac-
laurin.

Two classical books on inequalities are [1] and [2]. In modern theory, general means are
defined quite abstractly in terms of metric (or topological) space with some natural proper-
ties (see, e.g., [3]). The mean of any list of points (data) in any set of points can be thought
of as the point (or more points) “closest” to the list in a given, prescribed sense. For ex-
ample, the Fréchet mean (introduced about 1938) of points x1, . . . , xN on a Riemannian
manifold (M, d) is a point p ∈ M (if exists) such that

∑
i d2(p, xi ) has minimal value.

2 Standard and less standard proofs
The most common textbook proofs of the AM-GM inequality are by induction or by
Jensen’s functional inequality f

( x+y
2

) ≤ 1
2 ( f (x) + f (y)) which verbally can be phrased

as “the value at the average is not greater than the average of the values”. It is just the
convexity of the function f . (In fact, Jensen in his paper from 1906 used concavity of the
function ln on positive reals.)

The following induction proof of the AM-GM inequality is well known since 1970; it
is short and instructive. Here it is. For n = 1 it is trivial. Suppose it holds for n − 1
and let x1, . . . , xn ≥ 0 are given. Let A and G be their arithmetic and geometric means,
respectively. We may assume that x1 ≤ x2 ≤ · · · ≤ xn . Then clearly x1 ≤ A ≤ xn . By
induction on n − 1 numbers x2, x3, . . . , xn−1, x1 + xn − A we have(

x2 + x3 + · · · + xn−1 + (x1 + xn − A)

n − 1

)n−1

≥ x2x3 · · · xn−1(x1 + xn − A).
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Fig. 1 The square on x + y contains four rectangles with
x and y, so for areas we have: (x + y)2 ≥ 4xy ⇒
x+y

2 ≥ √
xy.

2

Fig. 2 In the right triangle ABC , the circumradius is R = x+y
2 and the height is

h = √
xy; R ≥ h ⇒ x+y

2 ≥ √
xy .

Since x1 + x2 + · · · + xn = nA, it follows that An−1 ≥ x2x3 · · · xn−1(x1 + xn − A). From
A − x1 ≥ 0 and xn − A ≥ 0, we get (A − x1)(xn − A) ≥ 0, hence A(x1 + xn − A) ≥ x1xn .
By multiplying the above inequality by A we obtain

An ≥ x2x3 · · · xn−1[A(x1 + xn − A)] ≥ x2x3 · · · xn−1x1xn = Gn.

Therefore, A ≥ G. The equality case is clear. A much older induction proof on k where
n = 2k was given by Cauchy around 1821.

The case n = 2 as we said was known from the ancient times. The algebraic proof is:

(x + y)2 − 4xy = (x − y)2 ≥ 0,

hence x2 + y2 ≥ 2xy. Geometric “visual” proofs are in Figures 1–4.

For n = 3 there are also some “quick” algebraic proofs. Here are a few. Consider x3 +
y3 + z3 − 3xyz and express it in terms of the elementary symmetric functions (e1, e2, e3).
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Fig. 3 “Astronomy proof”. In the ellipse:
x + y

2
=

a ≥ b = √
xy, since major semi-axes ≥ mi-

nor semi-axes.

Fig. 4 “Satellite proof”. SA = x , SB = y; x+y
2 =

SO ≥ SH = √
xy, distance to the Earth’s

center ≥ distance to the horizon.

We obtain by standard methods

x3 + y3 + z3 − 3xyz = e3
1 − 3e1e2 = e1(e

2
1 − 3e2)

= (x + y + z)[(x + y + z)2 − 3(xy + yz + zx)]
= (x + y + z)(x2 + y2 + z2 − xy − yz − zx)

= 1

2
(x + y + z)[(x − y)2 + (y − z)2 + (z − x)2] ≥ 0,

because x, y and z are nonnegative.Hence, x3+y3+z3 ≥ 3xyz. The following polynomial
identity also implies the AM-GM inequality in three variables x, y, z ≥ 0:

(x+y+z)3−27xyz = 1

2

[
(x+y+7z)(x−y)2+(y+z+7x)(y−z)2+(z+x+7y)(z−x)2

]
.

In four variables:

(x + y + z +w)4 − 44xyzw = 1

3

∑(
(x2 + y2 + 11z2 + 11w2 + 14xy + 58zw)(x − y)2

)
,
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where � means the symmetric sum. And in general, as it can be shown, the difference∑n
i=1 xn

i − ∏n
i=1(nxi ) is of the form

∑
i< j Pi j (xi − x j )

2, where Pij are homogeneous
polynomials with positive coefficients and hence the AM-GM inequality.

In the next “quick” proof the convexity of the exponential function ex = exp(x) is used.
We have

1

3
(x + y + z) = 1

3
(exp ln x + exp ln y + exp ln z) ≥ exp

1

3
(ln x + ln y + ln z) = 3

√
xyz.

Of course, it works for all n, not only for n = 3. A similar “quick” proof is to apply
Jensen’s inequality to the function f (x) = x ln x . The classical (high-school) proof of
Pólya (from around 1925) used convexity of ex and the fact that ex ≥ x + 1, but this
follows by noticing that the line y = x +1 is the tangent line to the curve y = ex at x = 0.
Substitute xi

A − 1, i = 1, . . . , n and multiply. (Pólya once said that he dreamed this proof
and that was his best dream ever.)

The rearrangement inequality is the following fact on inner products: (x, yσ ) ≤ (x, y),
for all vectors x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn with x1 ≤ · · · ≤ xn and y1 ≤
· · · ≤ yn and all permutations σ ∈ Sn where (x, y) = x1y1 + · · · + xn yn and (x, yσ ) =
x1yσ(1)+· · ·+ xn yσ(n). It is not hard to show that this also implies the AM-GM inequality.
And the rearrangement inequality can also (standardly) be proved by induction on the
number n−i , of fixed points of σ . The induction bases is the trivial case i = 0.

Newton’s classical proof is as follows. Let ek be the kth elementary symmetric function
of x1, . . . , xn ≥ 0 and Ek = ek/

(n
k

)
, E0 := 1. Then the Newton inequality says that

E0, E1, . . . , En is a log-concave sequence, i.e., Ek−1Ek+1 ≤ E2
k , for all k = 1, . . . , n

with equality if and only if x1 = · · · = xn . Now from

k∏
i=1

(Ei−1Ei+1)
i ≤

k∏
i=1

E2i
i

it follows that Ek
k+1 ≤ Ek+1

k or E
1
k
k ≥ E

1
k+1
k+1. Hence (Newton’s lemma) E1 ≥ E

1
2
2 ≥ · · · ≥

E
1
n
n and the AM-GM inequality (and its refinements) follows. The above log-concavity

of Ek’s is a consequence of the general fact that if a real polynomial P(x) = ∑n
i=0 ai x i

has only real zeroes then ak (and moreover, ak/
(n
k

)
), k = 0, 1, . . . , n is a log-concave

sequence. (It seems the first rigorous proof of this fact was given by Sylvester about
1865.) The proof is by using Rolle’s theorem (from 1691). Namely, if P(x) has only
real zeroes, then so does Q(x) = Dk P(x), where D = d

dx is the derivative. Then
Q1(x) = xn−k Q(x−1) also has only real zeroes and so does R(x) = Dn−k−2 Q1(x).
But R(x) is a quadratic polynomial, so its discriminant is nonnegative. A little calculation
shows that this is just the claim.

A quick topological argument is as follows. Let M = max{x1x2 · · · xn : x1, . . . , xn ≥
0,

∑
xi = S}. M exists since the (continuous) product is defined on a compact set (sim-

plex). M occurs when all xi ’s are mutually equal (and so equal to S/n := A), because
otherwise if two factors differ and the sum remains the same, the product decreases. Thus
M ≤ An , the AM-GM inequality.
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We end this repertoire of proofs by remarking only that the increasing property for
weighted means Mr (x) is standardly proved by showing that the partial derivative ∂

∂r Mr ≥
0. And this follows from Jensen’s inequality for the function f (x) = x

q
p , q > p > 0, by

checking that f ′′(x) ≥ 0. And similarly the product property for Mr (x).

3 Some interpretations, applications and generalizations

Let us first give a geometric interpretation of the AM-GM inequality. Consider an n-
dimensional box (brick, rectangular parallelepiped) B whose side lengths from one cor-
ner are x1, . . . , xn . Then the AM-GM inequality is equivalent to 2n−1(x1 + · · · + xn) ≥
n2n−1 n

√
x1 . . . xn . The left-hand side is the total length of all edges of the box, i.e., it

is the perimeter per(B) of B. The right-hand side is the perimeter of the cube C with
side length n

√
x1 . . . xn and having the same volume x1 . . . xn as B. So the AM-GM in-

equality (vol(B) = vol(C) ⇒ per(B) ≥ per(C)) is a kind of isoperimetric inequality:
the cube has the minimal perimeter among all boxes of the given volume. (Is there any
clear-short geometric argument for this?) Another way to think of the AM-GM inequality
(x1 + · · ·+ xn)

n ≥ (nx1)(nx2) . . . (nxn) is that the cube of edge length (x1 + · · ·+ xn) has
greater volume than any box with side lengths nx1, . . . , nxn at one corner.

There is a whole variety of applications of the AM-GM inequality. Let us recall just a few
simple ones from geometry. Euler noticed in 1765 that the circumradius R is at least as
double as the inradius r of any triangle. Here is a short proof of this fact. Let S be the area
of a triangle with side lengths a, b and c and perimeter 2s. Recall,

S = abc

4R
= rs = √

s(s − a)(s − b)(s − c).

Then R ≥ 2r is equivalent to

abc ≥ 8(s − a)(s − b)(s − c),

or by putting x = s − a, y = s − b, z = s − c, to

(x + y)(y + z)(z + x) ≥ 8xyz.

But this follows by multiplying three simple AM-GM inequalities x+y
2 ≥ √

xy etc. Equal-
ity holds only for an equilateral triangle. By using the three variables AM-GM inequality
we get (s − a)(s − b)(s − c) ≤ ( s

3

)3, and hence

S = [s(s − a)(s − b)(s − c)]
1
2 ≤ s2

3
√

3
,

the isoperimetric property for triangles with equality again only for an equilateral triangle.
By using the AM-GM inequalities, the hyperbolic version of Euler’s inequality (for trian-
gles with circumcircle) is tanh(R) ≥ 2 tanh(r), and similarly in the spherical case ([4]).

Euler’s inequality holds in general for any Euclidean n-dimensional simplex: R ≥ nr ,
with equality only for the regular simplex. A slick proof (given by L. Fejés-Tóth in 1965),
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that does not make use of the AM-GM inequality is as follows. Let � = �(v0, v1, . . . , vn)
be an n-simplex and R = R(�) its circumradius. The centroid ci of the facet opposite to
vi is given (as a vector) by ci = 1

n (v0 + · · · + vi−1 + vi+1 + · · · + vn). It is easy to check
that the simplices � and �(c0, c1, . . . , cn) are similar with ratio n. Hence the distance
d(ci , c j ) = 1

n d(vi , v j ) for all i, j . This similarity implies R(�) = nR(�(c0, c1, . . . , cn)).
A ball of radius less than that of the inscribed ball can not meet every facet of �. Therefore
R(�(c0, c1, . . . , cn)) ≥ r . Hence, R = nR(�(c0, c1, . . . , cn)) ≥ nr .

The 2-variable Cauchy–Schwarz inequality (a2 +b2)(c2 +d2) ≥ (ac+bd)2 by expanding
both sides reduces to a2d2 + b2c2 ≥ 2abcd and this is again the 2-variable AM-GM
inequality (it can also be deduced from Fermat’s two square theorem (a2 +b2)(c2 +d2) =
(ac +bd)2 + (ad −bc)2). But the general Cauchy–Schwarz inequality |(x, y)| ≤ ‖x‖ ‖y‖
simply follows from two geometric facts:

(x, y) = ‖x‖ ‖y‖ cos∠(x, y) and |cos∠(x, y)| ≤ 1

for all angles ∠(x, y). Or algebraically from Lagrange’s identity

‖x‖2 ‖y‖2 = (x, y)2 +
∑
i< j

(xi y j − x j yi )
2

(it could also be called the Pythagoras–Fermat–Lagrange identity, see more on this topic
in [5]). Or analytically, by nonnegativity of the quadratic function f (t) = ∑n

i=1(xi t+yi )
2.

A notorious application of the AM-GM inequality is in proving the general isoperimetric
inequality: if V is the volume and S the surface area of a convex body K ⊆ Rn(S =
voln−1(∂K ), V = voln(K )) then Sn ≥ nnωnV n−1 with equality if and only if K is an
n-ball (here ωn = πn/2/�(n/2 + 1) is the volume of the unit n-ball; � is the gamma
function, �(x) = ∫ ∞

0 t x−1e−t dt). A standard proof (by approximation) reduces it to the
Brunn–Minkowski inequality

[vol(X + Y )]1/n ≥ [vol(X)]1/n + [vol(Y )]1/n

for all nonempty compact X,Y ⊆ Rn , and which for boxes with edges x1, . . . , xn and
y1, . . . , yn at one of the corners reduces to

n∏
i=1

(xi + yi )
1/n ≥

n∏
i=1

x1/n
i +

n∏
i=1

y1/n
i ,

and this is by the AM-GM inequality equivalent to

n∏
i=1

(
xi

xi + yi

)1/n

+
n∏

i=1

(
yi

xi + yi

)1/n

≤ 1

n

n∑
i=1

xi

xi + yi
+ 1

n

n∑
i=1

yi

xi + yi
= 1.

(It is a special case of the Aleksandrov–Fenchel inequality for mixed volumes.) For n-
simplices �, the isoperimetric ratio S(�)n/V (�)n−1 attains the minimum if and only if �
is a regular simplex. There are also various discrete analogues of isoperimetric inequalities.



The AM-GM inequality from different viewpoints 31

Here is a nice application in algebra. In 1967 Motzkin first found a real polynomial f =
f (X,Y ) = X4Y 2 + X2Y 4 + 1 − 3X2Y 2 which is nonnegative (by using the AM-GM
inequality), and yet it can not be a sum of squares of real polynomials. Indeed, suppose
f = ∑

f 2
i , for some fi ∈ R[X,Y ], i = 1, . . . , n. Clearly, each fi has degree ≤ 3, and so

each fi is a linear combination of 1, X , Y , X2, XY , Y 2, X3, X2Y , XY 2, Y 3. But X3 does
not appear in some fi , because otherwise X6 would appear in f with a positive coefficient.
Similarly, Y 3 and then also X2 and Y 2 and X and Y do not appear. Hence, each fi is of
the form

fi = ai + bi XY + ci X
2Y + di XY 2.

But then
∑

b2
i = −3, a contradiction. However, every nonnegative real polynomial is a

sum of squares of rational functions as Artin showed in 1927 (answering affirmatively to
the 17th Hilbert problem from 1900). Similar examples exist in more variables and their
positivity follows from the AM-GM inequality.

Now some generalizations of AM-GM. For any vector a = (a1, . . . , an) ∈ Rn , define the
[a]-mean of x1, . . . , xn ≥ 0 by

[a] = 1

n!
∑
σ∈Sn

xa1
σ1

. . . xan
σn

.

For example, if a = (1, 0, . . . , 0), [a] is the arithmetic mean of x1, . . . , xn and if a =(
1
n , . . . , 1

n

)
, then [a] is the geometric mean. In general, [a]1/(a1+···+an) is the Muirhead

mean of x1, . . . , xn .

Muirhead’s inequality (from 1916) says that [a] ≤ [b] for all x1, . . . , xn ≥ 0 if and
only if there is a doubly stochastic n × n matrix P such that a = Pb. An n × n real
matrix is doubly stochastic if all numbers are nonnegative and the sum of every row and
every column is equal to 1. In fact, a doubly stochastic matrix is a weighted average of
permutation matrices (in any row and any column only one unit, the rest are zeroes); this
is the Birkhoff–von Neumann theorem. Assuming a1 ≥ · · · ≥ an and b1 ≥ · · · ≥ bn , then
[a] ≤ [b] is equivalent to the fact that b majorizes a, i.e.,

a1 ≤ b1, a1 + a2 ≤ b1 + b2, . . . , a1 + · · · + an = b1 + · · · + bn.

The AM-GM is a special case of Muirhead’s inequality (and in fact, they are equivalent).

Also Hölder’s inequality seems more general, but it is also equivalent to the AM-GM
inequality. And there are many other important inequalities equivalent to the AM-GM
inequality.

The generalized f -mean for a continuous injective function f : I → R on an interval
I ⊆ R+ is defined by

M f (x1, . . . , xn) := f −1

(
1

n

n∑
i=1

f (xi )

)
.

If I = R+ and f (x) = xr then the f -mean is the r th power mean Mr (x). Additional
assumptions on f yield generalizations of the power mean increasing property (and in
particular of the AM-GM inequality).
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Direct applications of the AM-GM are also in numerical analysis, in optimization theory,
financial mathematics, probability theory and statistics, information theory, mathematical
physics, and many other areas.

4 Combinatorial proof

Back to our main AM-GM topic, we give now a combinatorial proof. Let x1, . . . , xn be
positive integers and nA = ∑n

i=1 xi . The AM-GM inequality is equivalent to

(nA)n ≥ (nx1)(nx2) . . . (nxn).

Let X1, . . . , Xn and Y be finite disjoint sets, |Xi | = nxi , i = 1, . . . , n and |Y | = nA.
Let us find an injection f : ∏n

i=1 Xi → Y n = Y × Y × · · · × Y . In case of two sets S
and T with |S| = a < b = |T | and t0 ∈ T , we can define an injection f : S × T ↪→
(S ∪ {t0}) × (T \ {t0}) by f (s, t) = (s, t) if t �= t0 and f (s, t0) = (t0, g(s)), where
g : S → T \ {t0} is any injection (which exists because a ≤ b − 1; f = ft0,g ). This is
in fact a combinatorial proof of the inequality ab ≤ (a + 1)(b − 1). In general, if all xi

are equal we have equality; otherwise there exist i and j such that xi < A and x j > A.
Choose an element z1 ∈ X j , add it to Xi , and define a new partition of X = ∪n

k=1Xk by

X = ∪n
k=1X (1)

k where X (1)
k = Xk, k �= i, j and X (1)

i = Xi ∪ {z1} , X (1)
j = X j \ {z1}.

Let fz1,g1 : Xi × X j ↪→ (Xi ∪ {z1}) × (
X j \ {z1}

)
and f1 : ∏n

k=1 Xk → ∏n
k=1 X (1)

k ,
the corresponding injection. (Recall the number of injections of N ↪→ X where n =
|N | ≤ |X | = x , is xn := x(x − 1)(x − 2) . . . (x − n + 1).) Again, if all |X (1)

k | are equal

we are done, otherwise form a new partition of X = ∪n
k=1X (2)

k and define an injection

f2 : ∏n
k=1 X (1)

k → ∏n
k=1 X (2)

k and continue this in the same way until we reach equality,

i.e., there exists m ∈ N such that |X (m)
k | = |Y | for all 1 ≤ k ≤ n, and a bijection

h : ∏n
k=1 X (m)

k → Y n . Then f := h ◦ fm ◦ · · · ◦ f1 : ∏n
k=1 Xk → Y n is an injection. This

proves the AM-GM inequality for all nonnegative integers.

If x1, . . . , xn ≥ 0 are any real numbers then by the above combinatorial reasons we know
all 2n AM-GM inequalities for all combinations of � � and � � (lower and upper inte-
ger parts, or “floors” and “ceilings”) applied to all x1, . . . , xn and then by convexity and
continuity arguments it holds for them, too. The following is the moral of the above proof.
When a partition of a finite set in n blocks has equal sized blocks, then the number of ways
to pick just one point from each block is the largest.

5 Physical interpretation

Now a bit of physics (inspired by [6]). Consider n bodies or solids (e.g., boxes or bricks)
with the same heat capacity C > 0. Suppose the i th box has the temperature xi > 0,
i = 1, . . . , n. Imagine now that we put all the bricks together. Then the temperatures tend
to distribute so that they are equally distributed at the end of the experiment. This is a
consequence of the first law of thermodynamics (the law of conservation of energy): tem-
peratures tend to differ as little as possible until they eventually become equally distributed
(with the same probability everywhere when the equilibrium is achieved).
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At the end of the experiment the total entropy of the system did not decrease. This is a
consequence of the second law of thermodynamics: the total entropy of a physical system
increases (rather, does not decrease) until the system reaches its limit (the popular phrase
is “the entropy of the universe tends to a maximum”). The entropy S measures the number
of ways the thermodynamic system may be rearranged, i.e., it measures unpredictability
of a system, or it is a “measure of disorder”. By the “heating formula” (Boltzmann) the
entropy change is given by �S = C ln(T/T0). Here T0 is the initial temperature, and T
the final temperature. The starting temperatures T0 are x1, x2, . . . , xn , and the boxes (of
the same heat capacity C > 0) will in a continuous manner by the end of the experiment
have temperature equal to the mean value A = A(x1, . . . , xn). The total entropy did not
decrease, so

∑
�S = ∑n

i=1 C ln A
xi

≥ 0, and this implies the AM-GM inequality.

6 The arithmetic-geometric mixed mean and final remarks

The arithmetic mean M1 = A and the geometric mean M0 = G of two numbers x, y > 0
give rise to the new mixed (or composite) arithmetic-geometric mean (AGM for short),
denoted by M0,1(x, y) = GA(x, y). It is defined as the common limit of the bounded
decreasing sequence (xn)n≥0 and the bounded increasing sequence (yn)n≥0 given by x0 =
x , y0 = y and xn+1 = 1

2 (xn + yn) = M1(xn, yn), yn+1 = √
xn yn = M0(xn, yn). The

convergence is rather fast since |xn+1 − yn+1| < 1
2 |xn − yn|. As Gauss noted in 1818 (and

independently Abel in 1827), the value

M0,1(x, y) = π

2I (x, y)

where

I (x, y) =
∫ π/2

0

dϕ√
(x cosϕ)2 + (y sin ϕ)2

= I

(
x + y

2
,
√

xy

)
,

and the AGM can not be expressed any simpler than in terms of complete elliptic integrals.
The basic Pythagorean inequality G(x, y) ≤ GA(x, y) ≤ A(x, y) (or M0 ≤ M0,1 ≤ M1)
is a natural refinement of the AM-GM inequality in two variables. (What is an eloquent
meaning of GA(x, y) on Figures 2–4?)

Interesting recent research on AGM are papers [7] and [8]. Let us mention only that the
mixed mean Mp,q = Mp,q (x, y) for parameters p ≤ q can also be defined in a simi-
lar manner as M0,1 and then recursively general means with more parameters and more
variables. Inequality like Mp ≤ Mp,q ≤ Mq generalizes the Pythagorean inequality and
refines the power mean increasing property. More generally, we can consider a mixed
( f, g)-mean for functions f and g and moreover multi-functional mixed means of more
variables.

Another type of “mixed-means” was introduced in [9], where it is proved that

M1(M0(x1), M0(x1, x2), . . . , M0(x1, . . . , xn))

≤ M0(M1(x1), M1(x1, x2), . . . , M1(x1, . . . , xn)).

(Needless to say, M0 ≤ M1, the ordinary AM-GM, is used in the proof.)
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In conclusion, we might say that many facets of the AM-GM inequality in elementary alge-
bra, analysis, topology, geometry, combinatorics, physics, modern mixed mean theory etc.
exemplarily show that fundamental principles are profound, unifying and amalgamated
throughout mathematics and suggest further research and applications.

References
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