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Short note From Pappus to Kocik’s diagram
for relativistic velocity addition

Gerhard Wanner

Recently, J. Kocik [4] discovered a nice diagram for Poincaré’s formula for relativistic
velocity addition

w = u + v

1 + uv
(1)

(see Fig. 3, right). A. Sasane and V.Ufnarovski [7] gave three alternative geometric proofs.
The purpose of this note is to show that still another proof is closely related to Carnot’s
solution of an ancient problem of Pappus (Prop.VII.117 in [6]).
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Figure 1 Pappus’ problem VII.117 (from the 1660 edition, left), Pappus’ solution and proof (right)

Pappus’ problem. For a given circle and three given points DEF located on a straight
line � (“tribus punctis DEF in recta linea”), find a triangle ABC inscribed in this circle
whose sides (possibly extended) pass through D, E, F (see Fig. 1).
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Figure 2 Carnot’s formula (2) for the map A �→ B through U

Pappus’ solution. The points A, B,C are unknown, but we know the products AE · CE
as well as BF · CF (Eucl. III.36)1. These quantities were later called power of E and F
with respect to this circle by Steiner2. We now suppose the points A, B,C to be known
and draw the chord BG parallel to � and the line GCH with H on �. We also draw the
tangent BK with K on �. Then (see Fig. 1, right)

α at A = α at G (Eucl. III.21) = α at H (Eucl. I.29) ⇒ ACH D cocyclic

(the dashed circle, inverse of Eucl. III.22). Similarly,

β at C = β at B (Eucl. III.32) = β at K (Eucl. I.30) ⇒ BCH K cocyclic

(the dotted circle, again by Eucl. III.22). Now Eucl. III.36 applied to the dashed circle
gives DE · H E = AE · CE , which determines the point H ; Eucl. III.36 applied to the
dotted circle gives K F ·H F = BF ·CF , which determines K (this last step is not drawn in
Pappus’ picture of Fig. 1, left, because it was the subject of his earlier Proposition VII.105).
Finally the tangent from K gives B , the line BF gives C and the line EC gives A.

This beautiful proof remained standard for 15 centuries, until during the XVIIIth century
mathematicians (G.Cramer, L. Euler, J. Castillon, J.L. Lagrange) struggled to find simpler
proofs, extensions to points DEF in arbitrary position, or more than three such points.
Eventually, L.N.M.Carnot [3] in 1803 found an elegant solution for all cases.

Carnot’s solution of the general problem. The main idea of Carnot was the use of tA =
tan α

2 and tB = − tan β
2 as “coordinates” for the points A and B on the unit circle (see

Fig. 2). The use of the tangens theorem of Viète [8] applied to the triangle OU A gives

u − 1

u + 1
= tan δ−υ

2

tan δ+υ
2

= − tan
β

2
· tan

α

2
or tB = u − 1

u + 1
· 1

tA
(2)

1All cited theorems Eucl. III.36, Eucl. III.21 etc. are known from high school, but perhaps not under these names.
2see, e.g., [5], p. 98.
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because, by adding up the angles of the triangles OU A and OB A, we obtain, with
Eucl. I.32, β

2 = υ−δ
2 and α

2 = 90◦ − δ+υ
2 .

In the case where U does not lie on the x-axis, a little bit more complicated proof leads to
a so-called Möbius transform between tA and tB . The group property of these transforms,
discovered by Carnot when Möbius was still a boy, allowed him to solve any Pappus-like
problem with arbitrary many points (see, e.g., [9]).
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Figure 3 Kocik’s diagram (left), generalization (right)

Proof of Kocik’s diagram. We use here the right-hand formula of (2) for evaluating the
map A �→ B �→ C �→ D �→ A (see Fig. 3, left) with tangents tA �→ tB �→ tC �→ tD �→ tA
through the points U , W , V , O and obtain by applying (2) repeatedly

tA = −1

1

1

tD
= −1

1

v + 1

v − 1
tC = · · · = −1

1

v + 1

v − 1

w − 1

w + 1

u + 1

u − 1
tA . (3)

This map returns for any initial point A back to A exactly if

(v − 1)(w + 1)(u − 1) = −(v + 1)(w − 1)(u + 1) (4)

which, when solved for w, gives equation (1). The particular case where A lies at the North
Pole is Kocik’s original diagram.

Proof with projective geometry. We move O to an arbitrary position U4 with coordinate
u4, so that equations (3) and (4) become (see Fig. 3, right)

u4 − 1

u4 + 1

u3 + 1

u3 − 1

u2 − 1

u2 + 1

u1 + 1

u1 − 1
= 1 (5)

which, with −1 = u0 and 1 = u5, can be written as

u4 − u5

u4 − u0
: u1 − u5

u1 − u0
= u3 − u5

u3 − u0
: u2 − u5

u2 − u0
. (6)

This is another theorem of Pappus (VII.129), saying that under perspective projections the
cross ratios (U5,U0,U4,U1) and (U5,U0,U3,U2) are the same. This general case makes
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thus the third proof of [7] much simpler. Relation (5) (in a different notation) is due to
A.L. Candy [2] and the elegant proof via Pappus’ theorem to L. Bankoff [1].

Direct trigonometric proof. We connect in Fig. 2 A with the “South-Pole” and B with
the “North-Pole” and create so Kocik’s original diagram. The angles 90◦ − α and 90◦ − β
then lead to the angles 45◦ − α

2 and 45◦ − α
2 at the periphery (Eucl. III.20). Kocik’s u and

v then become (remember tan 45◦ = 1)

u = tan
(
45◦ − α

2

)
= 1 − tan α

2

1 + tan α
2

⇒ tan
α

2
= 1 − u

1 + u
, also tan

β

2
= 1 − v

1 + v
, (7)

so that Viète’s formula in (2) (with u replaced by w) is

1 − w

1 + w
= tan

β

2
· tan

α

2
= 1 − u

1 + u
· 1 − v

1 + v
, (8)

another nice way to write (4) and thus (1).

Remark. The author wishes to acknowledge helpful hints from F. Sigrist (Neuchâtel) and
Djura Paunić (Novi Sad).
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