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1 Introduction

A partition of a positive integer n is a sequence of non-increasing positive integers n1
(a1 times), n2 (a2 times), . . ., ns (as times), with ni > ni+1, that sum to n. We sometimes
write such partition π = (na1

1 na2
2 · · · nas

s ), each ni is called part of the partition π and
ai its frequency. The partition function p(n) counts the partitions of n. If we ignore some
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.

Partitionen von natürlichen Zahlen sind ein gut untersuchtes Gebiet in der kombinato-
rischen Zahlentheorie. Schon Euler gab die erzeugende Funktion für die Anzahl sol-
cher Partitionen an. Von grossem Interesse sind auch Partitionen mit bestimmten Ei-
genschaften, etwa einer gegebenen Anzahl Summanden, mit vorgegebenem kleinsten
Summanden usw. In der vorliegenden Arbeit werden Partitionen betrachtet, bei denen
nur zwei verschiedene Summanden auftreten, also zum Beispiel 11 = 4+4+1+1+1.
Insbesondere finden die Autoren eine explizite Formel für die Anzahl solcher Partitio-
nen. Diese Formel wird in einen schlanken Algorithmus gegossen, der diese Partitio-
nen liefert. Als Nebenprodukt resultiert eine Formel für die Partitionen einer Zahl n,
bei denen nur s teilerfremde Summanden auftreten.
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unpublished work of G.W. Leibniz, the theory of integer partitions can find its origin in
the work of L. Euler [6]. In fact, he made a sustained study of partitions and partition
identities, and exploited them to establish a huge number of results in Analysis in 1748.
An excellent introduction to this subject can be found in the book of G.E. Andrews [2].

Definition 1.1. Let π = (na1
1 na2

2 · · · nas
s ) be a partition of n. We say that π is a partition

into k parts with s distinct sizes if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n = a1 n1 + · · · + as ns;
n1 > n2 > · · · > ns ≥ 1;
a1 + · · · + as = k;
a1, . . . , as ≥ 1.

(1.1)

Let t (n, k, s) be the number of solutions of system (1.1) and t (n, s) the total number of
partitions of n into s distinct sizes. Then we have

t (n, s) =
2n−s(s−1)

2∑
k=s

t (n, k, s). (1.2)

Example 1.2. Among 27 partitions of n = 11 into two distinct sizes, the partitions (71 14),
(42 13), (31 24) and (33 12) are the only ones which are into 5 parts.

This kind of partitions appeared for the first time in the work of P.A. MacMahon [7]. Next,
E. Deutsch presented the number of partitions of n into exactly two odd sizes of parts
and the number of partitions of n into exactly two sizes of parts, one odd and one even.
One can find these values in the Online Encyclopedia of Integer Sequences (OEIS) [8] as
A117955 for the first number, A117956 for the second one and A002133 for the number
of partitions of n using only 2 types of parts.

In [3] we can find a proof of effective and non-effective finiteness theorems on t (n, k, s),
we can cite for example the following results:

Theorem 1.3. For k ≥ s ≥ 2 and n ≥ k + s(s−1)
2 , we have

t (n, k, s) =
� 2n−s(s−1)

2k �∑
i=1

k−s+1∑
j=1

t (n − ki, k − j, s − 1), (1.3)

t (n, k, 2) =
� n−1

k �∑
i=1

τk−1↓(n − ki), (1.4)

where τd↓(k) denotes the number of positive divisors of k less than or equal to d.
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2 Main results

One of the aims of this paper is to give an explicit formula for t (n, k, 2) using an effective
new approach. Thus, let us consider the system:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n = a1 n1 + a2 n2;
a1 + a2 = k;
n1 > n2 ≥ 1;
a1, a2 ≥ 1.

(2.1)

Throughout the remainder of the paper let m = n1 − n2 for any solution of system (2.1).

First of all, we introduce the following lemma to prepare the main theorem.

Lemma 2.1. System (2.1) has integral solutions if and only if the following conditions are
satisfied:

(i) n ≡ n2k (mod m),

(ii) max
(
1,

⌈ n
k

⌉− m + χ(k|n)
) ≤ n2 ≤

⌊ n
k

⌋− χ(k|n),

where χ(k|n) = 1 if k divides n, and 0 otherwise.

Proof. By system (2.1) we have(
n1 n2
1 1

)(
a1
a2

)
=

(
n
k

)
·

Since m > 0, we get (
a1
a2

)
= 1

m

(
n − n2k
−n + n1k

)
·

Then, system (2.1) has integral solutions if and only if m divides n − n2k, n − n2k > 0
and −n + n1k > 0. That is,

n ≡ n2k (mod m) and
n

k
− m < n2 <

n

k
·

Dependent on whether k divides n, plus or minus 1 needs to be added, which is done by
χ(k|n) and the required result holds. �

From this lemma, we can now derive the following theorem.

Theorem 2.2. For k ≥ 2 and n ≥ k + 1 let d = gcd(n, k) and for any divisor e of d let
Ie be the set of pairs (α, β) ∈ N

2, such that:

• 1 ≤ α ≤ ⌊n−k
e

⌋
and gcd

(
α, k

e

) = 1,

• β ≡ ( n
e

) ( k
e

)−1
(mod α) and 0 ≤ β ≤ min

(
α − 1,

⌊ n
k

⌋− χ(k|n)
)
.
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Then

t (n, k, 2) =
∑
e|d

∑
(α,β)∈Ie

(⌊⌊ n
k

⌋− χ(k|n)− β

α

⌋

−
⌈

max
(
1,

⌈ n
k

⌉+ χ(k|n)− αe
)− β

α

⌉
+ 1

)
.

Proof. Put e = gcd(m, k) and let α = m
e , that is 1 ≤ α ≤ ⌊ n−k

e

⌋
and gcd

(
α, k

e

) = 1. By

Lemma 2.1, case (i), we can see that e divides d and n2 ≡
( n

e

) ( k
e

)−1
(mod α).

Let 0 ≤ β < α, such that β ≡ ( n
e

) ( k
e

)−1
(mod α). Then

n2 = β + tα, t ∈ Z.

Since β ≤ n2, then t ∈ N. It follows from Lemma 2.1, case (ii), that

max
(
1,

⌈n

k

⌉
− m + χ(k|n)

)
≤ β + tα ≤

⌊n

k

⌋
− χ(k|n)·

Finally, t (n, k, 2) equals the number of positive integers t , such that⌈
max

(
1,

⌈n
k

⌉− m + χ(k|n)
)− β

α

⌉
≤ t ≤

⌊⌊ n
k

⌋− χ(k|n)− β

α

⌋
·

This completes the proof. �

Remark 2.3. One nice application of Theorem 2.2 concerns Algorithm 1 which allows to
generate all partitions of n using exactly two distinct sizes of parts.

We remark that Algorithm 1 runs in O(n).

Example 2.4. Let n = 22 and k = 8, then d = gcd(22, 8) = 2. So, we have two divisors
of d , e = 1 and e = 2.

Case 1: e = 1.
The values of α that satisfy 1 ≤ α ≤ 14 and gcd(α, 8) = 1 are 1, 3, 5, 7, 9, 11 or 13.

1. For α = 1, we get β = 0. The pair (1, 0) is accepted and gives the values:

t = 1, n2 = 2, n1 = 3, a2 = 2 and a1 = 6,

and then the partition (36 22).

2. For α = 3, we get β = 2. The pair (3, 2) is accepted and gives the values:

t = 1, n2 = 2, n1 = 5, a2 = 6 and a1 = 2,

and then the partition (52 26).
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Algorithm 1. Partitions into k parts with exactly two distinct sizes of parts.

Require: k ≥ 2, n ≥ max{k, 3}
Ensure: Set of quadruple (n1, a1, n2, a2),

d ← gcd(n, k)
for each divisor e of d do

for α from 1 to
⌊ n−k

e

⌋
do

if gcd
(
α, k

e

) = 1 then

β ← ( n
e

) ( k
e

)−1
(mod α)

if β ≤ min
(
α − 1,

⌊n
k

⌋− χ(k|n)
)
then

t1 ←
⌈

max(1,� n
k �−αe+χ(k|n))−β

α

⌉
t2 ←

⌊� n
k �−χ(k|n)−β

α

⌋
for t from t1 to t2 do

n2 ← β + tα

n1 ← αe + n2

a2←
⌊

n−n1k
n2−n1

⌋
a1← k − a2

end for

end if

end if

end for

end for

3. For α = 5, we get β = 4 > min(4, 2), then the pair (5, 4) is rejected.

4. For α = 7, we get β = 1. The pair (7, 1) is accepted and gives the values:

t = 1, n2 = 1, n1 = 8, a2 = 6 and a1 = 2,

and then the partition (82 16).

5. For α = 9, we get β = 5 > min(8, 2), then the pair (9, 5) is rejected.

6. For α = 11, we get β = 3 > min(10, 2), then the pair (11, 3) is rejected.

7. For α = 13, we have β = 6 > min(13, 2), then the pair (13, 6) is rejected.

Case 2: e = 2.
The values of α that satisfy 1 ≤ α ≤ 7 and gcd(α, 8) = 1 are 1, 3, 5 or 7.

1. For α = 1, we have β = 0. The pair (1, 0) is accepted and gives 1 ≤ t ≤ 2. Applying
Algorithm 1, we obtain two partitions corresponding to the pair (1, 0); the first one
is (37 11) for t = 1 and the second one is (43 25) for t = 2.
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2. For α = 3, we get β = 2. The pair (3, 2) is accepted and gives the values:

t = 1, n2 = 2, n1 = 8, a2 = 7 and a1 = 1,

and then the partition (81 27).

3. For α = 5, we get β = 4 > min(4, 2), the pair (5, 4) is rejected.

4. For α = 7, we get β = 1. The pair (7, 1) is accepted and gives the values:

t = 1, n2 = 1, n1 = 15, a2 = 7 and a1 = 1,

and then the partition (151 17).

We get, finally,
t (22, 8, 2) = 7.

3 Partitions into distinct co-prime sizes

After having counted the number t (n, k, s), it would be of considerable interest to explore
the number of partitions of n into k parts with exactly s distinct co-prime sizes, which we
denote by g(n, k, s). Thus, let us set

g(n, s) =
2n−s(s−1)

2∑
k=s

g(n, k, s). (3.1)

Theorem 3.1. For k ≥ s ≥ 2 and n ≥ k + s(s−1)
2 , we have

g(n, k, s) =
∑
d |n

μ
(n

d

)
t (d, k, s), (3.2)

where μ(.) denotes the Möbius function.

Proof. Let T (n, k, s) be the set of partitions of n into k parts with s distinct sizes and
G(n, k, s) the subset of such partitions but with s distinct co-prime sizes. We notice that,
the mapping from the set T (n, k, s) to

⋃
d |n G(d, k, s) defined by:

(na1
1 na2

2 · · · nas
s )→

((n1

δ

)a1
(n2

δ

)a2 · · ·
(ns

δ

)as
)

,

is a bijection, where δ = gcd(n1, n2, . . . , ns).

Consequently, we have

t (n, k, s) =
∑
d |n

g(d, k, s). (3.3)

Hence, the result follows by using the Möbius inversion formula. �
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Remark 3.2. Since t (d, k, s) = 0 if d < k + s(s−1)
2 , the summation in (3.2) can be

extended only over all divisors d of n such that d ≥ k + s(s−1)
2 . For example, if we take

n = 22 and k = 8, then

g(22, 8, 2) = μ (2) t (11, 8, 2)+ μ (1) t (22, 8, 2).

It can be checked using Algorithm 1 that if n = 11 and k = 8, then t (11, 8, 2) = 2, such
partitions are (23 15) and (41 17). Then, according to Example 2.4, we get g(22, 8, 2) =
7− 2 = 5. The partitions in question are: (37 11), (36 22), (52 26), (82 16) and (151 17).

Using Theorems 3.1 and 2.2, we can construct Table 1.

Table 1. g(n, k, 2), 2 ≤ k < n ≤ 20.

n\k 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 g(n, 2)

3 1 1

4 1 1 2

5 2 2 1 5

6 1 1 2 1 5

7 3 3 2 2 1 11

8 2 2 2 2 2 1 11

9 3 3 2 3 2 2 1 16

10 2 2 4 1 3 2 2 1 17

11 5 5 3 4 2 3 2 2 1 27

12 2 2 2 2 3 2 3 2 2 1 21

13 6 6 4 5 2 4 2 3 2 2 1 37

14 3 3 5 3 4 1 4 2 3 2 2 1 33

15 4 4 3 3 4 4 2 4 2 3 2 2 1 38

16 4 4 5 3 4 3 3 2 4 2 3 2 2 1 42

17 8 8 5 7 3 5 3 4 2 4 2 3 2 2 1 59

18 3 3 5 2 5 2 4 2 4 2 4 2 3 2 2 1 46

19 9 9 6 7 3 7 3 4 3 4 2 4 2 3 2 2 1 71

20 4 4 4 4 4 3 6 2 3 3 4 2 4 2 3 2 2 1 57

From identity (3.2) we can see that if k ≥ � n2 �, then t (n, k, 2) = g(n, k, 2). In the present
theorem we present this observation in a more explicit form.

Theorem 3.3. For n ≥ k + 1 and k ≥ max{2, � n2 �}, we have

t (n, k, 2) = g(n, k, 2) = τ (n − k)− χ(n),
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where τ (n) denotes the number of positive divisors of n and χ(n) = 1 if n = 2k,
0 otherwise.

Proof. Let us first notice that if k ≥ 1+max{2, � n2 �}, then k ≥ � n+1
2 �, and by Identity (1.4)

the result yields (see [3], Corollary 3). Let now k = max{2, � n2 �}. Since the result is true
for n = 3, we can assume k = � n2 �. Let π = (na1

1 na2
2 ) be a partition of n into k parts with

two distinct sizes. If n is even, then n2 = 1, else n > (a1 + a2) n2 = k n2 ≥ 2
⌊n

2

⌋ = n,
a contradiction. Hence, n − k = (n1 − 1) a1, in which case n1 − 1 divides n − k. So, for
each divisor d of n − k, we get n1 = d + 1, a1 = n−k

d > 0 and a2 = k − n−k
d > 0, except

for d = 1, where a2 = k − n−k
d = 0. Thus, the result follows.

Now, if n is odd, then n2 = 1 or (n1, n2) = (3, 2). Indeed, if (n2 = 2 and n1 ≥ 4) or (n2 ≥
3), then n > 3a1+ 2a2 = 2k+ a1 ≥ 2

⌊n
2

⌋+ 1 = n, a contradiction. In case of n2 = 1, by
the same argument as above, we get for each divisor d of n−k, n1 = d+1, a1 = n−k

d > 0
and a2 = k − n−k

d > 0, except for d = 1, where a2 = k − n−k
d < 0, which is completed

by the partition (3n−2k 23k−n). This completes the proof. �

Remark 3.4. As shown in the proof above, the t (n, k, 2) partitions have been generated
explicitly, in fact, for each divisor d of n − k, we have :

(na1
1 na2

2 ) =

⎧⎪⎪⎨
⎪⎪⎩

(
(d + 1)

n−k
d 1k− n−k

d

)
if

(
k > � n2 �

)
or

(
k = � n2 � and d �= 1

) ;
(3n−2k 23k−n) if n odd, k = � n2 � and d = 1;
Does not exist if n even, k = n

2 and d = 1.
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