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In this note we study geometric properties of triangles �ABC the sides of which are in
arithmetic progression, C A − BC = AB − C A. As far as the authors know, this topic
does not seem to have been in the spotlight1. This is why we would like to integrate some
known results and (possibly) new results here.

Theorem 1. Let �ABC be a triangle with edge lengths a = BC, b = C A, c = AB.
Then, each of the following three conditions is a necessary and sufficient condition so that
the sequence of sides a, b, c is an arithmetic progression.

(i) The line joining the centroid G and the incenter I is parallel to the edge AC.

1with the exception of the study in the case of Heronian triangles, i.e., triangles such that the side lengths and
area are all integers ([BG]).

.

Im Zentrum dieses Artikels stehen Dreiecke, deren Seiten a, b, c eine arithmetische
Progression bilden, d.h. b = (a + c)/2. Derartige Dreiecke sind weder besonders sel-
ten noch besonders häufig anzutreffen: In der Menge der Äquivalenzklassen ähnlicher
Dreiecke bilden sie einen Raum der Kodimension eins, genau wie gleichschenklige
oder rechtwinklige Dreiecke. Im Gegensatz zu den eben genannten Klassen scheinen
aber Dreiecke, deren Seiten eine arithmetische Progression bilden, wenig untersucht
worden zu sein, obwohl sie, wie die Autoren der vorliegenden Arbeit zeigen, hübsche
geometrische Eigenschaften aufweisen, über die sie sich charakterisieren lassen.
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(ii) The line joining the incenter I and the circumcenter O is perpendicular to the line
B I (see Figure 1).

(iii) The midpoint of B and the excenter opposite to B lies on the edge AC (see Figure 2).

The condition (i) is given in an excercise in Section 8.6.7 on page 120 of a note by Paul Yiu
which is available through the web ([Y]). The authors found the conditions (ii) and (iii)
accidentally when they were drawing figures with softwares such as GeoGebra, Maple,
and Mathematica. Later, they got informed that the condition (ii) has been given in Prob-
lem 1 of the Indian National Mathematical Olympiad 2006. Three proofs of (ii), using
Stewart’s theorem, Ptolemy’s theorem, and Euler’s theorem and the formula of cos(B/2)
respectively, can be found in [I]. We give a (possibly) new proof of (ii), a little bit more
elementary, but still using Euler’s theorem. As for the condition (iii), the authors do not
know references.

Let us first prepare formulae which are needed in our proof. Let r, R denote the radii of
the incircle and the circumcircle respectively, S the area of �ABC , and s = (a+b+c)/2.
Then, Heron’s formula states

S = √
s(s − a)(s − b)(s − c) . (1)

Since |�ABC| = |�I AB| + |�I BC| + |�I AC| we have

r = 2S

a + b + c
= S

s
. (2)
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The law of sines, R = a/(sin A), implies

R = abc

4S
. (3)

Finally, Euler’s theorem (see, for example, [J, p. 186]) states

I O2 = R2 − 2r R. (4)

Proof. (i) The line GI is parallel to the line AC if and only if the heights of G and I
above the line AC are the same, which should be one third of the height of the vertex B .
Therefore the condition (i) is equivalet to saying that |�I AC| = |�ABC|/3, which, by
(2), is equivalent to br = (a + b + c)r/3.

(ii) Let D be the foot of the perpendicular to the edge BC from I (see Figure 1). Since D
is the tangent point of the incircle with the side BC , we have BD = (a−b+c)/2 = s−b.
Therefore,

OI⊥B I ⇐⇒ B I 2 + I O 2 = OB 2

(4)⇐⇒ (
BD 2 + r2

) + (R2 − 2r R) = R2

(2)⇐⇒ 2r R = (s − b)2 + s(s − a)(s − b)(s − c)

s2

(2),(3)⇐⇒ abc

2s
= s − b

s
(s(s − b) + (s − a)(s − c))

⇐⇒ abc = 2(s − b)(2s2 − (a + b + c)s + ac) = 2(s − b)ac

⇐⇒ b = a − b + c,

which completes the proof.

(iii) Let J be the excenter opposite to B , M the intersection of B J and AC . We show that
2b = a + c if and only if B J = 2BM .

Let us compute B J first. Let H be the foot of perpendicular to the line BC from J (see
Figure 1). Since H is the tangent point of the excircle and the line BC , we have BH =
(a + b + c)/2 = s. On the other hand, since J H is the radius of the excircle, J H =
2S/(a − b + c) = S/(s − b). Therefore,

B J2 = BH2 + J H2

(1)= s2 + s(s − a)(s − b)(s − c)

(s − b)2

= s

(s − b)
(s(s − b) + (s − a)(s − c))

= ac
a + b + c

a − b + c
.

Next we compute BM . Let E be the intersection of the circumcircle of the triangle ABC
and the line BM . Put m = CM, n = AM, x = BM , and y = ME . Since the triangle
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Fig. 3

BEC is similar to the triangle B AM (see Figure 3), we have (x + y) : a = c : x ,
i.e., x2 = ac − xy. On the other hand, the secant theorem implies xy = mn. Since
m : n = a : c,

x2 = ac − mn = ac − ab

a + c
· cb

a + c
= ac

(a + c)2

(
(a + c)2 − b2

)
,

which implies

BM2 = ac(a + b + c)(a − b + c)

(a + c)2
. (5)

Therefore,
B J = 2BM ⇐⇒ (a + c)2 = 4(a − b + c)2

⇐⇒ 2b = a + c,

which completes the proof. �

Remark 2. We can also show the formula (5) by applying the law of cosines to �B AC
and �B AM .
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